Human methylome studies SRP496763 Track Settings
 
Charting the regulatory landscape of TP53 on transposable elements in cancer [WGBS] [SRS20802026, SRS20802027, SRS20802028, SRS20802029, SRS20802030, SRS20802031, SRS20802032, SRS20802033, SRS20802034, SRS20802035, SRS20802036, SRS20802037, SRS20802038, SRS20802039, SRS20802040, SRS20802041, SRS20802042, SRS20802043, SRS20802044, SRS20802045, SRS20802046, SRS20802047, SRS20802048, SRS20802049]

Track collection: Human methylome studies

+  All tracks in this collection (425)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       CpG methylation ▾       PMD      
Select subtracks by views and experiment:
 All views AMR  CpG reads  CpG methylation  PMD 
experiment
SRX24005747 
SRX24005748 
SRX24005749 
SRX24005750 
SRX24005751 
SRX24005752 
SRX24005753 
SRX24005754 
SRX24005755 
SRX24005756 
SRX24005757 
SRX24005758 
SRX24005759 
SRX24005760 
SRX24005761 
SRX24005762 
SRX24005763 
SRX24005764 
SRX24005765 
SRX24005766 
SRX24005767 
SRX24005768 
SRX24005769 
SRX24005770 
experiment
 All views AMR  CpG reads  CpG methylation  PMD 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX24005747  CpG methylation  SRS20802028 / SRX24005747 (CpG methylation)   Data format 
hide
 Configure
 SRX24005748  CpG methylation  SRS20802027 / SRX24005748 (CpG methylation)   Data format 
hide
 Configure
 SRX24005749  CpG methylation  SRS20802026 / SRX24005749 (CpG methylation)   Data format 
hide
 Configure
 SRX24005750  CpG methylation  SRS20802029 / SRX24005750 (CpG methylation)   Data format 
hide
 Configure
 SRX24005751  CpG methylation  SRS20802030 / SRX24005751 (CpG methylation)   Data format 
hide
 Configure
 SRX24005752  CpG methylation  SRS20802031 / SRX24005752 (CpG methylation)   Data format 
hide
 Configure
 SRX24005753  CpG methylation  SRS20802032 / SRX24005753 (CpG methylation)   Data format 
hide
 Configure
 SRX24005754  CpG methylation  SRS20802035 / SRX24005754 (CpG methylation)   Data format 
hide
 Configure
 SRX24005755  CpG methylation  SRS20802033 / SRX24005755 (CpG methylation)   Data format 
hide
 Configure
 SRX24005756  CpG methylation  SRS20802034 / SRX24005756 (CpG methylation)   Data format 
hide
 Configure
 SRX24005757  CpG methylation  SRS20802036 / SRX24005757 (CpG methylation)   Data format 
hide
 Configure
 SRX24005758  CpG methylation  SRS20802037 / SRX24005758 (CpG methylation)   Data format 
hide
 Configure
 SRX24005759  CpG methylation  SRS20802038 / SRX24005759 (CpG methylation)   Data format 
hide
 Configure
 SRX24005760  CpG methylation  SRS20802040 / SRX24005760 (CpG methylation)   Data format 
hide
 Configure
 SRX24005761  CpG methylation  SRS20802039 / SRX24005761 (CpG methylation)   Data format 
hide
 Configure
 SRX24005762  CpG methylation  SRS20802041 / SRX24005762 (CpG methylation)   Data format 
hide
 Configure
 SRX24005763  CpG methylation  SRS20802042 / SRX24005763 (CpG methylation)   Data format 
hide
 Configure
 SRX24005764  CpG methylation  SRS20802043 / SRX24005764 (CpG methylation)   Data format 
hide
 Configure
 SRX24005765  CpG methylation  SRS20802044 / SRX24005765 (CpG methylation)   Data format 
hide
 Configure
 SRX24005766  CpG methylation  SRS20802045 / SRX24005766 (CpG methylation)   Data format 
hide
 Configure
 SRX24005767  CpG methylation  SRS20802047 / SRX24005767 (CpG methylation)   Data format 
hide
 Configure
 SRX24005768  CpG methylation  SRS20802046 / SRX24005768 (CpG methylation)   Data format 
hide
 Configure
 SRX24005769  CpG methylation  SRS20802048 / SRX24005769 (CpG methylation)   Data format 
hide
 Configure
 SRX24005770  CpG methylation  SRS20802049 / SRX24005770 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Charting the regulatory landscape of TP53 on transposable elements in cancer [WGBS]
SRA: SRP496763
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX24005747 SRS20802028 0.547 6.8 51865 16962.4 193 941.0 2062 616978.0 0.999 GSM8156729: A549_KO_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005748 SRS20802027 0.539 5.3 44170 18590.2 111 1004.0 1871 675732.7 0.998 GSM8156730: A549_KO_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005749 SRS20802026 0.563 4.3 40882 19229.8 53 1054.6 1749 721792.1 0.999 GSM8156731: A549_KO_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005750 SRS20802029 0.557 6.9 51604 17060.5 178 995.8 2082 612459.2 0.999 GSM8156732: A549_KO_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005751 SRS20802030 0.551 4.8 45665 18018.3 77 936.0 1971 614156.7 0.999 GSM8156733: A549_WT_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005752 SRS20802031 0.547 8.2 61204 14750.9 280 981.5 2453 497050.0 0.999 GSM8156734: A549_WT_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005753 SRS20802032 0.549 5.4 51260 16849.3 87 1056.8 2186 557234.5 0.999 GSM8156735: A549_WT_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005754 SRS20802035 0.548 6.4 53751 16208.1 145 957.4 2185 558045.6 0.999 GSM8156736: A549_WT_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005755 SRS20802033 0.705 9.8 71649 10222.8 726 978.9 1476 672314.7 0.999 GSM8156737: HCT116_KO_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005756 SRS20802034 0.702 7.9 67327 10732.2 485 931.9 1480 662201.6 0.998 GSM8156738: HCT116_KO_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005757 SRS20802036 0.700 5.7 61459 11685.5 193 950.0 1354 733695.3 0.999 GSM8156739: HCT116_KO_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005758 SRS20802037 0.704 7.2 65566 10924.5 378 983.5 1460 669264.3 0.999 GSM8156740: HCT116_KO_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005759 SRS20802038 0.727 8.5 72411 9120.4 578 947.1 1489 667043.8 0.999 GSM8156741: HCT116_WT_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005760 SRS20802040 0.723 7.9 70809 9273.4 538 963.6 1439 690674.9 0.999 GSM8156742: HCT116_WT_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005761 SRS20802039 0.722 7.2 69039 9497.6 425 945.2 1415 697536.3 0.999 GSM8156743: HCT116_WT_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005762 SRS20802041 0.715 7.2 69994 9361.7 404 990.9 1405 704791.3 0.999 GSM8156744: HCT116_WT_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005763 SRS20802042 0.628 10.4 50515 9226.9 1169 1062.5 902 1526299.6 0.999 GSM8156745: RKO_KO_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005764 SRS20802043 0.624 7.7 44310 12029.2 624 1050.5 937 1494891.2 0.999 GSM8156746: RKO_KO_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005765 SRS20802044 0.627 6.9 42310 11707.7 594 1055.7 835 1581506.1 0.999 GSM8156747: RKO_KO_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005766 SRS20802045 0.632 8.0 44323 10984.6 709 1046.6 887 1526308.1 0.999 GSM8156748: RKO_KO_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005767 SRS20802047 0.659 7.6 47274 9936.6 593 1084.7 932 1399686.3 0.999 GSM8156749: RKO_WT_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005768 SRS20802046 0.659 7.6 47215 10117.7 613 1080.0 949 1387624.1 0.999 GSM8156750: RKO_WT_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005769 SRS20802048 0.654 6.9 47420 9908.8 416 1084.3 915 1427075.6 0.999 GSM8156751: RKO_WT_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005770 SRS20802049 0.659 7.6 47659 9554.0 566 1079.3 921 1415627.8 0.999 GSM8156752: RKO_WT_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.