Human methylome studies SRP353670 Track Settings
 
DNA Methylation Potential Energy Landscape Analysis of MLL-rearranged Acute Myeloid Leukemia (AML) and Normal hematopoietic precursors [WGBS] [Acute Myeloid Leukemia, GMP, HSC, L-MPP]

Track collection: Human methylome studies

+  All tracks in this collection (424)

Maximum display mode:       Reset to defaults   
Select views (Help):
HMR       PMD       CpG methylation ▾       AMR       CpG reads ▾      
Select subtracks by views and experiment:
 All views HMR  PMD  CpG methylation  AMR  CpG reads 
experiment
SRX13625870 
SRX13625871 
SRX13625872 
SRX13625873 
SRX13625874 
SRX13625875 
SRX13625876 
SRX13625877 
SRX13625878 
SRX13625879 
SRX13625880 
SRX13625881 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX13625870  HMR  Acute Myeloid Leukemia / SRX13625870 (HMR)   Data format 
hide
 Configure
 SRX13625870  CpG methylation  Acute Myeloid Leukemia / SRX13625870 (CpG methylation)   Data format 
hide
 SRX13625871  HMR  Acute Myeloid Leukemia / SRX13625871 (HMR)   Data format 
hide
 Configure
 SRX13625871  CpG methylation  Acute Myeloid Leukemia / SRX13625871 (CpG methylation)   Data format 
hide
 SRX13625872  HMR  Acute Myeloid Leukemia / SRX13625872 (HMR)   Data format 
hide
 Configure
 SRX13625872  CpG methylation  Acute Myeloid Leukemia / SRX13625872 (CpG methylation)   Data format 
hide
 SRX13625873  HMR  Acute Myeloid Leukemia / SRX13625873 (HMR)   Data format 
hide
 Configure
 SRX13625873  CpG methylation  Acute Myeloid Leukemia / SRX13625873 (CpG methylation)   Data format 
hide
 SRX13625874  HMR  Acute Myeloid Leukemia / SRX13625874 (HMR)   Data format 
hide
 Configure
 SRX13625874  CpG methylation  Acute Myeloid Leukemia / SRX13625874 (CpG methylation)   Data format 
hide
 Configure
 SRX13625875  CpG methylation  Acute Myeloid Leukemia / SRX13625875 (CpG methylation)   Data format 
hide
 SRX13625876  HMR  Acute Myeloid Leukemia / SRX13625876 (HMR)   Data format 
hide
 Configure
 SRX13625876  CpG methylation  Acute Myeloid Leukemia / SRX13625876 (CpG methylation)   Data format 
hide
 SRX13625877  HMR  Acute Myeloid Leukemia / SRX13625877 (HMR)   Data format 
hide
 Configure
 SRX13625877  CpG methylation  Acute Myeloid Leukemia / SRX13625877 (CpG methylation)   Data format 
hide
 SRX13625878  HMR  Acute Myeloid Leukemia / SRX13625878 (HMR)   Data format 
hide
 Configure
 SRX13625878  CpG methylation  Acute Myeloid Leukemia / SRX13625878 (CpG methylation)   Data format 
hide
 SRX13625879  HMR  GMP / SRX13625879 (HMR)   Data format 
hide
 Configure
 SRX13625879  CpG methylation  GMP / SRX13625879 (CpG methylation)   Data format 
hide
 SRX13625880  HMR  HSC / SRX13625880 (HMR)   Data format 
hide
 Configure
 SRX13625880  CpG methylation  HSC / SRX13625880 (CpG methylation)   Data format 
hide
 SRX13625881  HMR  L-MPP / SRX13625881 (HMR)   Data format 
hide
 Configure
 SRX13625881  CpG methylation  L-MPP / SRX13625881 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: DNA Methylation Potential Energy Landscape Analysis of MLL-rearranged Acute Myeloid Leukemia (AML) and Normal hematopoietic precursors [WGBS]
SRA: SRP353670
GEO: GSE135869
Pubmed: 32114880

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX13625870 Acute Myeloid Leukemia 0.766 17.2 91945 916.0 1170 1087.5 3062 15585.0 0.996 GSM4036919: AML-1; Homo sapiens; Bisulfite-Seq
SRX13625871 Acute Myeloid Leukemia 0.681 8.7 55677 1586.0 180 982.1 2269 17673.9 0.996 GSM4036920: AML-2; Homo sapiens; Bisulfite-Seq
SRX13625872 Acute Myeloid Leukemia 0.754 9.1 51670 1149.2 398 1076.8 6133 76088.7 0.996 GSM4036921: AML-3; Homo sapiens; Bisulfite-Seq
SRX13625873 Acute Myeloid Leukemia 0.756 7.7 56857 1031.6 155 886.8 1190 15346.0 0.996 GSM4036922: AML-4; Homo sapiens; Bisulfite-Seq
SRX13625874 Acute Myeloid Leukemia 0.753 9.3 73779 1072.0 416 1120.5 3431 10482.7 0.997 GSM4036923: AML-5; Homo sapiens; Bisulfite-Seq
SRX13625875 Acute Myeloid Leukemia 0.626 8.3 65974 10299.2 324 1023.5 2705 375482.9 0.997 GSM4036924: AML-6; Homo sapiens; Bisulfite-Seq
SRX13625876 Acute Myeloid Leukemia 0.803 10.8 69849 934.8 428 1076.5 2673 12227.6 0.996 GSM4036925: AML-7; Homo sapiens; Bisulfite-Seq
SRX13625877 Acute Myeloid Leukemia 0.800 7.6 52312 1035.8 230 1043.6 1418 20373.5 0.996 GSM4036926: AML-8; Homo sapiens; Bisulfite-Seq
SRX13625878 Acute Myeloid Leukemia 0.771 9.1 67868 1049.8 178 931.3 2988 9495.6 0.996 GSM4036927: AML-9; Homo sapiens; Bisulfite-Seq
SRX13625879 GMP 0.843 10.4 60331 911.4 268 929.7 4191 9079.2 0.996 GSM4036931: GMP-1; Homo sapiens; Bisulfite-Seq
SRX13625880 HSC 0.848 10.0 58711 927.3 211 967.8 3900 9659.2 0.996 GSM4036932: HSC-1; Homo sapiens; Bisulfite-Seq
SRX13625881 L-MPP 0.843 10.3 58927 919.2 289 904.8 4148 9038.3 0.996 GSM4036933: L-MPP-1; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.