Human methylome studies SRP315878 Track Settings
 
Homo sapiens Epigenomics [Bone Marrow, Peripheral Blood]

Track collection: Human methylome studies

+  All tracks in this collection (424)

Maximum display mode:       Reset to defaults   
Select views (Help):
HMR       PMD       CpG methylation ▾       AMR       CpG reads ▾      
Select subtracks by views and experiment:
 All views HMR  PMD  CpG methylation  AMR  CpG reads 
experiment
SRX10658601 
SRX10658607 
SRX10658608 
SRX10658609 
SRX10658610 
SRX10658619 
SRX10658620 
SRX10658621 
SRX10658623 
SRX10658624 
SRX10658625 
SRX10658626 
SRX10658627 
SRX10658628 
SRX10658631 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX10658601  CpG methylation  Bone Marrow / SRX10658601 (CpG methylation)   Data format 
hide
 SRX10658607  HMR  Bone Marrow / SRX10658607 (HMR)   Data format 
hide
 Configure
 SRX10658607  CpG methylation  Bone Marrow / SRX10658607 (CpG methylation)   Data format 
hide
 Configure
 SRX10658608  CpG methylation  Bone Marrow / SRX10658608 (CpG methylation)   Data format 
hide
 Configure
 SRX10658609  CpG methylation  Bone Marrow / SRX10658609 (CpG methylation)   Data format 
hide
 SRX10658610  HMR  Bone Marrow / SRX10658610 (HMR)   Data format 
hide
 Configure
 SRX10658610  CpG methylation  Bone Marrow / SRX10658610 (CpG methylation)   Data format 
hide
 SRX10658619  HMR  Bone Marrow / SRX10658619 (HMR)   Data format 
hide
 Configure
 SRX10658619  CpG methylation  Bone Marrow / SRX10658619 (CpG methylation)   Data format 
hide
 Configure
 SRX10658620  CpG methylation  Bone Marrow / SRX10658620 (CpG methylation)   Data format 
hide
 SRX10658621  HMR  Bone Marrow / SRX10658621 (HMR)   Data format 
hide
 Configure
 SRX10658621  CpG methylation  Bone Marrow / SRX10658621 (CpG methylation)   Data format 
hide
 SRX10658623  HMR  Bone Marrow / SRX10658623 (HMR)   Data format 
hide
 Configure
 SRX10658623  CpG methylation  Bone Marrow / SRX10658623 (CpG methylation)   Data format 
hide
 SRX10658624  HMR  Peripheral Blood / SRX10658624 (HMR)   Data format 
hide
 Configure
 SRX10658624  CpG methylation  Peripheral Blood / SRX10658624 (CpG methylation)   Data format 
hide
 SRX10658625  HMR  Peripheral Blood / SRX10658625 (HMR)   Data format 
hide
 Configure
 SRX10658625  CpG methylation  Peripheral Blood / SRX10658625 (CpG methylation)   Data format 
hide
 SRX10658626  HMR  Peripheral Blood / SRX10658626 (HMR)   Data format 
hide
 Configure
 SRX10658626  CpG methylation  Peripheral Blood / SRX10658626 (CpG methylation)   Data format 
hide
 SRX10658627  HMR  Peripheral Blood / SRX10658627 (HMR)   Data format 
hide
 Configure
 SRX10658627  CpG methylation  Peripheral Blood / SRX10658627 (CpG methylation)   Data format 
hide
 SRX10658628  HMR  Peripheral Blood / SRX10658628 (HMR)   Data format 
hide
 Configure
 SRX10658628  CpG methylation  Peripheral Blood / SRX10658628 (CpG methylation)   Data format 
hide
 SRX10658631  HMR  Bone Marrow / SRX10658631 (HMR)   Data format 
hide
 Configure
 SRX10658631  CpG methylation  Bone Marrow / SRX10658631 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Homo sapiens Epigenomics
SRA: SRP315878
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX10658601 Bone Marrow 0.638 1.8 23867 1944.4 636 43095.8 183 36686.6 0.992 WGBS of Homo sapiens-3
SRX10658607 Bone Marrow 0.636 2.1 25160 1828.0 875 32876.1 261 31564.5 0.992 WGBS of Homo sapiens-3
SRX10658608 Bone Marrow 0.637 2.1 24860 1814.8 927 31107.7 270 31821.9 0.992 WGBS of Homo sapiens-3
SRX10658609 Bone Marrow 0.637 1.7 23473 2035.6 447 63050.9 155 39720.5 0.992 WGBS of Homo sapiens-3
SRX10658610 Bone Marrow 0.636 2.8 29001 1517.3 2148 14254.5 273 28942.0 0.993 WGBS of Homo sapiens-3
SRX10658619 Bone Marrow 0.691 1.8 27657 1696.0 255 109809.2 227 46520.2 0.993 WGBS of Homo sapiens-3
SRX10658620 Bone Marrow 0.639 1.7 23640 2000.9 503 56078.6 127 44490.6 0.992 WGBS of Homo sapiens-3
SRX10658621 Bone Marrow 0.692 1.6 26563 1754.0 237 117493.5 181 51697.6 0.991 WGBS of Homo sapiens-3
SRX10658623 Bone Marrow 0.687 2.1 27685 1653.4 428 63637.0 318 39436.3 0.992 WGBS of Homo sapiens-3
SRX10658624 Peripheral Blood 0.688 2.1 27968 1649.4 365 74393.4 248 43495.2 0.993 WGBS of Homo sapiens-3
SRX10658625 Peripheral Blood 0.692 1.6 26489 1757.3 235 114499.3 171 52160.2 0.991 WGBS of Homo sapiens-3
SRX10658626 Peripheral Blood 0.687 1.7 27189 1749.8 247 112741.8 239 47369.1 0.993 WGBS of Homo sapiens-3
SRX10658627 Peripheral Blood 0.685 2.5 29883 1542.9 589 48364.8 444 32096.5 0.994 WGBS of Homo sapiens-3
SRX10658628 Peripheral Blood 0.688 2.0 28100 1666.8 351 77336.0 227 44960.3 0.993 WGBS of Homo sapiens-3
SRX10658631 Bone Marrow 0.638 2.3 25824 1732.9 1030 28197.8 139 36810.0 0.993 WGBS of Homo sapiens-3

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.