Human methylome studies SRP151496 Track Settings
 
Generation of FOXO3 engineered human stem cells with enhanced efficacy and safety [ECs, MSCs, TransMSCs, VSMCs]

Track collection: Human methylome studies

+  All tracks in this collection (424)

Maximum display mode:       Reset to defaults   
Select views (Help):
HMR       PMD       CpG methylation ▾       AMR       CpG reads ▾      
Select subtracks by views and experiment:
 All views HMR  PMD  CpG methylation  AMR  CpG reads 
experiment
SRX4306015 
SRX4306016 
SRX4306017 
SRX4306018 
SRX4306019 
SRX4306020 
SRX4306021 
SRX4306022 
SRX4306023 
SRX4306024 
SRX4306025 
SRX4306026 
SRX4306027 
SRX4306028 
SRX4306029 
SRX4306030 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX4306015  HMR  ECs / SRX4306015 (HMR)   Data format 
hide
 Configure
 SRX4306015  CpG methylation  ECs / SRX4306015 (CpG methylation)   Data format 
hide
 SRX4306016  HMR  ECs / SRX4306016 (HMR)   Data format 
hide
 Configure
 SRX4306016  CpG methylation  ECs / SRX4306016 (CpG methylation)   Data format 
hide
 SRX4306017  HMR  ECs / SRX4306017 (HMR)   Data format 
hide
 Configure
 SRX4306017  CpG methylation  ECs / SRX4306017 (CpG methylation)   Data format 
hide
 SRX4306018  HMR  ECs / SRX4306018 (HMR)   Data format 
hide
 Configure
 SRX4306018  CpG methylation  ECs / SRX4306018 (CpG methylation)   Data format 
hide
 SRX4306019  HMR  VSMCs / SRX4306019 (HMR)   Data format 
hide
 Configure
 SRX4306019  CpG methylation  VSMCs / SRX4306019 (CpG methylation)   Data format 
hide
 SRX4306020  HMR  VSMCs / SRX4306020 (HMR)   Data format 
hide
 Configure
 SRX4306020  CpG methylation  VSMCs / SRX4306020 (CpG methylation)   Data format 
hide
 SRX4306021  HMR  VSMCs / SRX4306021 (HMR)   Data format 
hide
 Configure
 SRX4306021  CpG methylation  VSMCs / SRX4306021 (CpG methylation)   Data format 
hide
 SRX4306022  HMR  VSMCs / SRX4306022 (HMR)   Data format 
hide
 Configure
 SRX4306022  CpG methylation  VSMCs / SRX4306022 (CpG methylation)   Data format 
hide
 SRX4306023  HMR  MSCs / SRX4306023 (HMR)   Data format 
hide
 Configure
 SRX4306023  CpG methylation  MSCs / SRX4306023 (CpG methylation)   Data format 
hide
 SRX4306024  HMR  MSCs / SRX4306024 (HMR)   Data format 
hide
 Configure
 SRX4306024  CpG methylation  MSCs / SRX4306024 (CpG methylation)   Data format 
hide
 SRX4306025  HMR  MSCs / SRX4306025 (HMR)   Data format 
hide
 Configure
 SRX4306025  CpG methylation  MSCs / SRX4306025 (CpG methylation)   Data format 
hide
 SRX4306026  HMR  MSCs / SRX4306026 (HMR)   Data format 
hide
 Configure
 SRX4306026  CpG methylation  MSCs / SRX4306026 (CpG methylation)   Data format 
hide
 Configure
 SRX4306027  CpG methylation  TransMSCs / SRX4306027 (CpG methylation)   Data format 
hide
 Configure
 SRX4306028  CpG methylation  TransMSCs / SRX4306028 (CpG methylation)   Data format 
hide
 Configure
 SRX4306029  CpG methylation  TransMSCs / SRX4306029 (CpG methylation)   Data format 
hide
 Configure
 SRX4306030  CpG methylation  TransMSCs / SRX4306030 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Generation of FOXO3 engineered human stem cells with enhanced efficacy and safety
SRA: SRP151496
GEO: GSE116277
Pubmed: 30661960

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX4306015 ECs 0.705 2.7 32039 1356.4 405 1157.5 271 60062.7 0.982 GSM3223641: hEC_FOXO3+/+_1 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306016 ECs 0.704 4.5 34868 1249.6 774 1197.8 451 51678.5 0.983 GSM3223642: hEC_FOXO3+/+_2 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306017 ECs 0.699 4.2 34726 1290.0 706 1186.7 451 50285.9 0.985 GSM3223643: hEC_FOXO32SA/2SA_1 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306018 ECs 0.696 3.2 32476 1367.6 510 1153.2 250 65150.7 0.985 GSM3223644: hEC_FOXO32SA/2SA_2 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306019 VSMCs 0.720 3.9 29815 1380.0 539 1171.3 834 129216.2 0.987 GSM3223645: hVSMC_FOXO3+/+_1 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306020 VSMCs 0.722 3.4 29325 1409.3 457 1151.3 749 135974.6 0.987 GSM3223646: hVSMC_FOXO3+/+_2 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306021 VSMCs 0.711 3.2 27679 1445.7 396 1167.1 687 121954.4 0.987 GSM3223647: hVSMC_FOXO32SA/2SA_1 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306022 VSMCs 0.711 3.3 28301 1426.3 421 1133.7 724 118234.3 0.987 GSM3223648: hVSMC_FOXO32SA/2SA_2 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306023 MSCs 0.673 3.0 29951 2263.4 335 1200.0 798 954521.8 0.982 GSM3223649: hMSC_FOXO3+/+_1 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306024 MSCs 0.676 4.1 31684 2279.2 532 1172.1 919 866384.0 0.982 GSM3223650: hMSC_FOXO3+/+_2 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306025 MSCs 0.653 4.3 33190 3716.5 525 1162.7 849 1176744.0 0.977 GSM3223651: hMSC_FOXO32SA/2SA_1 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306026 MSCs 0.647 3.7 32206 3447.4 483 1140.0 759 1271606.7 0.980 GSM3223652: hMSC_FOXO32SA/2SA_2 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306027 TransMSCs 0.633 2.9 36574 5739.0 316 1148.2 1058 923963.7 0.984 GSM3223653: hTransMSC_FOXO3+/+_1 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306028 TransMSCs 0.638 4.4 42388 6940.0 585 1132.5 1231 823959.8 0.983 GSM3223654: hTransMSC_FOXO3+/+_2 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306029 TransMSCs 0.604 5.9 41553 9557.2 644 1129.3 1437 797877.8 0.981 GSM3223655: hTransMSC_FOXO32SA/2SA_1 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq
SRX4306030 TransMSCs 0.606 3.0 33984 7335.0 264 1113.0 1110 965859.5 0.982 GSM3223656: hTransMSC_FOXO32SA/2SA_2 Bisulfite-Seq; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.