Human methylome studies SRP103794 Track Settings
 
Methylation DNA mediated KLF4 binding activity in glioblastoma cells [Glioblastoma Cells]

Track collection: Human methylome studies

+  All tracks in this collection (424)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       AMR       CpG reads ▾      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  AMR  CpG reads 
experiment
SRX2732474 
SRX2732475 
SRX2732476 
SRX2732477 
SRX2732478 
SRX2732479 
SRX2732480 
SRX2732481 
SRX2732483 
SRX2732484 
SRX2732485 
SRX2732486 
SRX2732487 
SRX2732488 
SRX2732489 
SRX2732490 
SRX2732491 
SRX2732492 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX2732474  CpG methylation  Glioblastoma Cells / SRX2732474 (CpG methylation)   Data format 
hide
 Configure
 SRX2732475  CpG methylation  Glioblastoma Cells / SRX2732475 (CpG methylation)   Data format 
hide
 Configure
 SRX2732476  CpG methylation  Glioblastoma Cells / SRX2732476 (CpG methylation)   Data format 
hide
 Configure
 SRX2732477  CpG methylation  Glioblastoma Cells / SRX2732477 (CpG methylation)   Data format 
hide
 Configure
 SRX2732478  CpG methylation  Glioblastoma Cells / SRX2732478 (CpG methylation)   Data format 
hide
 Configure
 SRX2732479  CpG methylation  Glioblastoma Cells / SRX2732479 (CpG methylation)   Data format 
hide
 Configure
 SRX2732480  CpG methylation  Glioblastoma Cells / SRX2732480 (CpG methylation)   Data format 
hide
 Configure
 SRX2732481  CpG methylation  Glioblastoma Cells / SRX2732481 (CpG methylation)   Data format 
hide
 Configure
 SRX2732483  CpG methylation  Glioblastoma Cells / SRX2732483 (CpG methylation)   Data format 
hide
 Configure
 SRX2732484  CpG methylation  Glioblastoma Cells / SRX2732484 (CpG methylation)   Data format 
hide
 Configure
 SRX2732485  CpG methylation  Glioblastoma Cells / SRX2732485 (CpG methylation)   Data format 
hide
 Configure
 SRX2732486  CpG methylation  Glioblastoma Cells / SRX2732486 (CpG methylation)   Data format 
hide
 Configure
 SRX2732487  CpG methylation  Glioblastoma Cells / SRX2732487 (CpG methylation)   Data format 
hide
 Configure
 SRX2732488  CpG methylation  Glioblastoma Cells / SRX2732488 (CpG methylation)   Data format 
hide
 Configure
 SRX2732489  CpG methylation  Glioblastoma Cells / SRX2732489 (CpG methylation)   Data format 
hide
 Configure
 SRX2732490  CpG methylation  Glioblastoma Cells / SRX2732490 (CpG methylation)   Data format 
hide
 Configure
 SRX2732491  CpG methylation  Glioblastoma Cells / SRX2732491 (CpG methylation)   Data format 
hide
 Configure
 SRX2732492  CpG methylation  Glioblastoma Cells / SRX2732492 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Methylation DNA mediated KLF4 binding activity in glioblastoma cells
SRA: SRP103794
GEO: GSE97632
Pubmed: 28553926

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX2732474 Glioblastoma Cells 0.450 2.2 8733 46579.3 13 1259.7 2031 443892.7 0.998 GSM2573773: U87DOX whole genome bisulfite p2; Homo sapiens; Bisulfite-Seq
SRX2732475 Glioblastoma Cells 0.449 2.2 8755 46334.2 15 1100.1 2009 449197.6 0.998 GSM2573774: U87DOX whole genome bisulfite p3; Homo sapiens; Bisulfite-Seq
SRX2732476 Glioblastoma Cells 0.449 2.2 8398 47509.1 13 1220.8 2012 444822.1 0.998 GSM2573775: U87DOX whole genome bisulfite p4; Homo sapiens; Bisulfite-Seq
SRX2732477 Glioblastoma Cells 0.448 2.2 8340 47145.7 10 1547.0 2039 442056.7 0.998 GSM2573776: U87DOX whole genome bisulfite p5; Homo sapiens; Bisulfite-Seq
SRX2732478 Glioblastoma Cells 0.449 2.5 9214 46485.7 11 1530.4 2190 416911.0 0.998 GSM2573777: U87DOX whole genome bisulfite p6; Homo sapiens; Bisulfite-Seq
SRX2732479 Glioblastoma Cells 0.449 2.4 9403 45964.7 9 1522.8 2163 422105.9 0.998 GSM2573778: U87DOX whole genome bisulfite p7; Homo sapiens; Bisulfite-Seq
SRX2732480 Glioblastoma Cells 0.449 2.4 9014 46945.0 14 1200.6 2166 422864.9 0.998 GSM2573779: U87DOX whole genome bisulfite p8; Homo sapiens; Bisulfite-Seq
SRX2732481 Glioblastoma Cells 0.449 2.4 9508 45689.0 11 1491.0 2175 419046.1 0.998 GSM2573780: U87DOX whole genome bisulfite p9; Homo sapiens; Bisulfite-Seq
SRX2732483 Glioblastoma Cells 0.445 1.8 6214 49655.9 7 1741.9 1882 472454.8 0.998 GSM2573782: U87 whole genome bisulfite p1; Homo sapiens; Bisulfite-Seq
SRX2732484 Glioblastoma Cells 0.446 1.9 6996 47543.0 9 1387.3 1902 468028.1 0.999 GSM2573783: U87 whole genome bisulfite p2; Homo sapiens; Bisulfite-Seq
SRX2732485 Glioblastoma Cells 0.446 1.9 7004 47407.4 10 1392.7 1889 470224.3 0.998 GSM2573784: U87 whole genome bisulfite p3; Homo sapiens; Bisulfite-Seq
SRX2732486 Glioblastoma Cells 0.446 1.9 7147 47625.3 8 1438.5 1880 471670.9 0.998 GSM2573785: U87 whole genome bisulfite p4; Homo sapiens; Bisulfite-Seq
SRX2732487 Glioblastoma Cells 0.446 2.1 7534 49263.8 11 1385.1 1971 454759.0 0.998 GSM2573786: U87 whole genome bisulfite p5; Homo sapiens; Bisulfite-Seq
SRX2732488 Glioblastoma Cells 0.446 2.1 7446 49023.4 11 1280.6 2035 444624.3 0.998 GSM2573787: U87 whole genome bisulfite p6; Homo sapiens; Bisulfite-Seq
SRX2732489 Glioblastoma Cells 0.446 2.0 7454 48712.3 13 1197.0 1976 453189.0 0.998 GSM2573788: U87 whole genome bisulfite p7; Homo sapiens; Bisulfite-Seq
SRX2732490 Glioblastoma Cells 0.445 2.1 7674 48302.2 11 1420.8 1967 455354.9 0.998 GSM2573789: U87 whole genome bisulfite p8; Homo sapiens; Bisulfite-Seq
SRX2732491 Glioblastoma Cells 0.442 1.8 6320 49633.9 7 2036.6 1894 469890.5 0.998 GSM2573790: U87 whole genome bisulfite p9; Homo sapiens; Bisulfite-Seq
SRX2732492 Glioblastoma Cells 0.443 2.0 6908 49865.9 8 1528.2 1982 453126.1 0.998 GSM2573791: U87 whole genome bisulfite p10; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.