Human methylome studies SRP051366 Track Settings
 
Bacterial Infection Remodels the DNA Methylation Landscape of Human Dendritic Cells (Bisulfite-Seq) [Monocyte-derived Dendritic Cells]

Track collection: Human methylome studies

+  All tracks in this collection (425)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       HMR       CpG reads ▾       CpG methylation ▾       PMD      
Select subtracks by views and experiment:
 All views AMR  HMR  CpG reads  CpG methylation  PMD 
experiment
SRX818207 
SRX818208 
SRX818209 
SRX818210 
SRX818211 
SRX818212 
SRX818213 
SRX818214 
SRX818215 
SRX818216 
SRX818217 
SRX818218 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX818207  HMR  Monocyte-derived Dendritic Cells / SRX818207 (HMR)   Data format 
hide
 Configure
 SRX818207  CpG methylation  Monocyte-derived Dendritic Cells / SRX818207 (CpG methylation)   Data format 
hide
 SRX818208  HMR  Monocyte-derived Dendritic Cells / SRX818208 (HMR)   Data format 
hide
 Configure
 SRX818208  CpG methylation  Monocyte-derived Dendritic Cells / SRX818208 (CpG methylation)   Data format 
hide
 SRX818209  HMR  Monocyte-derived Dendritic Cells / SRX818209 (HMR)   Data format 
hide
 Configure
 SRX818209  CpG methylation  Monocyte-derived Dendritic Cells / SRX818209 (CpG methylation)   Data format 
hide
 SRX818210  HMR  Monocyte-derived Dendritic Cells / SRX818210 (HMR)   Data format 
hide
 Configure
 SRX818210  CpG methylation  Monocyte-derived Dendritic Cells / SRX818210 (CpG methylation)   Data format 
hide
 SRX818211  HMR  Monocyte-derived Dendritic Cells / SRX818211 (HMR)   Data format 
hide
 Configure
 SRX818211  CpG methylation  Monocyte-derived Dendritic Cells / SRX818211 (CpG methylation)   Data format 
hide
 SRX818212  HMR  Monocyte-derived Dendritic Cells / SRX818212 (HMR)   Data format 
hide
 Configure
 SRX818212  CpG methylation  Monocyte-derived Dendritic Cells / SRX818212 (CpG methylation)   Data format 
hide
 SRX818213  HMR  Monocyte-derived Dendritic Cells / SRX818213 (HMR)   Data format 
hide
 Configure
 SRX818213  CpG methylation  Monocyte-derived Dendritic Cells / SRX818213 (CpG methylation)   Data format 
hide
 SRX818214  HMR  Monocyte-derived Dendritic Cells / SRX818214 (HMR)   Data format 
hide
 Configure
 SRX818214  CpG methylation  Monocyte-derived Dendritic Cells / SRX818214 (CpG methylation)   Data format 
hide
 SRX818215  HMR  Monocyte-derived Dendritic Cells / SRX818215 (HMR)   Data format 
hide
 Configure
 SRX818215  CpG methylation  Monocyte-derived Dendritic Cells / SRX818215 (CpG methylation)   Data format 
hide
 SRX818216  HMR  Monocyte-derived Dendritic Cells / SRX818216 (HMR)   Data format 
hide
 Configure
 SRX818216  CpG methylation  Monocyte-derived Dendritic Cells / SRX818216 (CpG methylation)   Data format 
hide
 SRX818217  HMR  Monocyte-derived Dendritic Cells / SRX818217 (HMR)   Data format 
hide
 Configure
 SRX818217  CpG methylation  Monocyte-derived Dendritic Cells / SRX818217 (CpG methylation)   Data format 
hide
 SRX818218  HMR  Monocyte-derived Dendritic Cells / SRX818218 (HMR)   Data format 
hide
 Configure
 SRX818218  CpG methylation  Monocyte-derived Dendritic Cells / SRX818218 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Bacterial Infection Remodels the DNA Methylation Landscape of Human Dendritic Cells (Bisulfite-Seq)
SRA: SRP051366
GEO: GSE64177
Pubmed: 26392366

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX818207 Monocyte-derived Dendritic Cells 0.797 8.3 60707 958.2 40 1085.5 2067 19238.8 0.994 GSM1565939: DC_MTB_rep1 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818208 Monocyte-derived Dendritic Cells 0.797 9.1 61651 961.6 44 1372.1 2280 19581.2 0.987 GSM1565940: DC_NI_rep1 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818209 Monocyte-derived Dendritic Cells 0.806 8.0 59546 989.8 15 1456.9 2534 16610.7 0.994 GSM1565941: DC_MTB_rep2 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818210 Monocyte-derived Dendritic Cells 0.810 7.9 59457 995.9 10 1408.1 2410 17663.4 0.994 GSM1565942: DC_NI_rep2 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818211 Monocyte-derived Dendritic Cells 0.788 8.5 61513 947.6 41 1285.0 2368 17287.4 0.993 GSM1565943: DC_MTB_rep3 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818212 Monocyte-derived Dendritic Cells 0.788 8.0 60550 953.7 34 1153.2 2286 17412.9 0.993 GSM1565944: DC_NI_rep3 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818213 Monocyte-derived Dendritic Cells 0.812 10.4 60806 959.8 44 1210.2 4055 10574.4 0.994 GSM1565945: DC_MTB_rep4 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818214 Monocyte-derived Dendritic Cells 0.792 8.0 57926 979.9 34 1218.3 2469 16652.0 0.991 GSM1565946: DC_NI_rep4 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818215 Monocyte-derived Dendritic Cells 0.767 5.8 49958 1108.7 10 979.6 2169 20354.2 0.988 GSM1565947: DC_MTB_rep5 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818216 Monocyte-derived Dendritic Cells 0.781 8.3 60103 974.2 59 1140.2 2209 22040.5 0.991 GSM1565948: DC_NI_rep5 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818217 Monocyte-derived Dendritic Cells 0.798 5.7 53387 1049.2 15 1190.0 1548 24954.8 0.994 GSM1565949: DC_MTB_rep6 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq
SRX818218 Monocyte-derived Dendritic Cells 0.794 8.4 59064 981.2 48 1372.2 2118 18311.6 0.993 GSM1565950: DC_NI_rep6 (Bisulfite-Seq); Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.