Human methylome studies ERP129475 Track Settings
 
DNA Methylation signature in mononuclear cells and proinflammatory cytokines in Meniere Disease [Mononuclear]

Track collection: Human methylome studies

+  All tracks in this collection (426)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
ERX5626045 
ERX5626046 
ERX5626047 
ERX5626048 
ERX5626049 
ERX5626050 
ERX5626051 
ERX5626052 
ERX5626053 
ERX5626054 
ERX5626055 
ERX5626056 
ERX5626057 
ERX5626058 
ERX5626059 
ERX5626060 
ERX5626061 
ERX5626062 
ERX5626063 
ERX5626064 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 ERX5626045  HMR  Mononuclear / ERX5626045 (HMR)   Data format 
hide
 Configure
 ERX5626045  CpG methylation  Mononuclear / ERX5626045 (CpG methylation)   Data format 
hide
 ERX5626046  HMR  Mononuclear / ERX5626046 (HMR)   Data format 
hide
 Configure
 ERX5626046  CpG methylation  Mononuclear / ERX5626046 (CpG methylation)   Data format 
hide
 ERX5626047  HMR  Mononuclear / ERX5626047 (HMR)   Data format 
hide
 Configure
 ERX5626047  CpG methylation  Mononuclear / ERX5626047 (CpG methylation)   Data format 
hide
 ERX5626048  HMR  Mononuclear / ERX5626048 (HMR)   Data format 
hide
 Configure
 ERX5626048  CpG methylation  Mononuclear / ERX5626048 (CpG methylation)   Data format 
hide
 ERX5626049  HMR  Mononuclear / ERX5626049 (HMR)   Data format 
hide
 Configure
 ERX5626049  CpG methylation  Mononuclear / ERX5626049 (CpG methylation)   Data format 
hide
 ERX5626050  HMR  Mononuclear / ERX5626050 (HMR)   Data format 
hide
 Configure
 ERX5626050  CpG methylation  Mononuclear / ERX5626050 (CpG methylation)   Data format 
hide
 ERX5626051  HMR  Mononuclear / ERX5626051 (HMR)   Data format 
hide
 Configure
 ERX5626051  CpG methylation  Mononuclear / ERX5626051 (CpG methylation)   Data format 
hide
 ERX5626052  HMR  Mononuclear / ERX5626052 (HMR)   Data format 
hide
 Configure
 ERX5626052  CpG methylation  Mononuclear / ERX5626052 (CpG methylation)   Data format 
hide
 ERX5626053  HMR  Mononuclear / ERX5626053 (HMR)   Data format 
hide
 Configure
 ERX5626053  CpG methylation  Mononuclear / ERX5626053 (CpG methylation)   Data format 
hide
 ERX5626054  HMR  Mononuclear / ERX5626054 (HMR)   Data format 
hide
 Configure
 ERX5626054  CpG methylation  Mononuclear / ERX5626054 (CpG methylation)   Data format 
hide
 ERX5626055  HMR  Mononuclear / ERX5626055 (HMR)   Data format 
hide
 Configure
 ERX5626055  CpG methylation  Mononuclear / ERX5626055 (CpG methylation)   Data format 
hide
 ERX5626056  HMR  Mononuclear / ERX5626056 (HMR)   Data format 
hide
 Configure
 ERX5626056  CpG methylation  Mononuclear / ERX5626056 (CpG methylation)   Data format 
hide
 ERX5626057  HMR  Mononuclear / ERX5626057 (HMR)   Data format 
hide
 Configure
 ERX5626057  CpG methylation  Mononuclear / ERX5626057 (CpG methylation)   Data format 
hide
 ERX5626058  HMR  Mononuclear / ERX5626058 (HMR)   Data format 
hide
 Configure
 ERX5626058  CpG methylation  Mononuclear / ERX5626058 (CpG methylation)   Data format 
hide
 ERX5626059  HMR  Mononuclear / ERX5626059 (HMR)   Data format 
hide
 Configure
 ERX5626059  CpG methylation  Mononuclear / ERX5626059 (CpG methylation)   Data format 
hide
 ERX5626060  HMR  Mononuclear / ERX5626060 (HMR)   Data format 
hide
 Configure
 ERX5626060  CpG methylation  Mononuclear / ERX5626060 (CpG methylation)   Data format 
hide
 ERX5626061  HMR  Mononuclear / ERX5626061 (HMR)   Data format 
hide
 Configure
 ERX5626061  CpG methylation  Mononuclear / ERX5626061 (CpG methylation)   Data format 
hide
 ERX5626062  HMR  Mononuclear / ERX5626062 (HMR)   Data format 
hide
 Configure
 ERX5626062  CpG methylation  Mononuclear / ERX5626062 (CpG methylation)   Data format 
hide
 ERX5626063  HMR  Mononuclear / ERX5626063 (HMR)   Data format 
hide
 Configure
 ERX5626063  CpG methylation  Mononuclear / ERX5626063 (CpG methylation)   Data format 
hide
 ERX5626064  HMR  Mononuclear / ERX5626064 (HMR)   Data format 
hide
 Configure
 ERX5626064  CpG methylation  Mononuclear / ERX5626064 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: DNA Methylation signature in mononuclear cells and proinflammatory cytokines in Meniere Disease
SRA: ERP129475
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
ERX5626045 Mononuclear 0.828 6.0 39202 1266.4 57 917.8 1126 24109.3 0.994 Illumina NovaSeq 6000 paired end sequencing
ERX5626046 Mononuclear 0.810 6.4 36308 1307.2 87 920.1 1194 15803.2 0.991 Illumina NovaSeq 6000 paired end sequencing
ERX5626047 Mononuclear 0.823 6.5 37791 1269.3 75 1006.7 1026 23486.4 0.994 Illumina NovaSeq 6000 paired end sequencing
ERX5626048 Mononuclear 0.831 6.2 37877 1275.6 60 828.0 1133 18777.8 0.994 Illumina NovaSeq 6000 paired end sequencing
ERX5626049 Mononuclear 0.816 6.9 39416 1247.2 110 944.5 1433 15114.4 0.990 Illumina NovaSeq 6000 paired end sequencing
ERX5626050 Mononuclear 0.833 6.2 37073 1303.4 55 990.7 1061 20996.6 0.994 Illumina NovaSeq 6000 paired end sequencing
ERX5626051 Mononuclear 0.825 7.2 48969 1183.8 118 905.5 1728 20210.6 0.996 Illumina NovaSeq 6000 paired end sequencing
ERX5626052 Mononuclear 0.814 7.0 40848 1250.5 117 903.5 1519 16026.5 0.995 Illumina NovaSeq 6000 paired end sequencing
ERX5626053 Mononuclear 0.833 5.9 43589 1246.4 57 885.2 1109 27699.6 0.981 Illumina NovaSeq 6000 paired end sequencing
ERX5626054 Mononuclear 0.815 6.0 38077 1298.8 77 832.6 954 21550.6 0.994 Illumina NovaSeq 6000 paired end sequencing
ERX5626055 Mononuclear 0.805 6.2 38231 1302.8 117 933.5 1301 15975.1 0.995 Illumina NovaSeq 6000 paired end sequencing
ERX5626056 Mononuclear 0.800 7.7 42964 1190.9 234 897.1 1784 13537.1 0.995 Illumina NovaSeq 6000 paired end sequencing
ERX5626057 Mononuclear 0.821 6.8 40532 1230.5 128 906.3 1390 14636.4 0.983 Illumina NovaSeq 6000 paired end sequencing
ERX5626058 Mononuclear 0.836 5.7 43374 1230.6 57 871.2 1116 27780.8 0.993 Illumina NovaSeq 6000 paired end sequencing
ERX5626059 Mononuclear 0.787 7.2 35939 1309.9 159 890.5 1280 14192.6 0.994 Illumina NovaSeq 6000 paired end sequencing
ERX5626060 Mononuclear 0.820 6.3 35959 1297.5 75 899.2 1303 17467.5 0.995 Illumina NovaSeq 6000 paired end sequencing
ERX5626061 Mononuclear 0.840 5.7 42588 1216.1 65 995.6 1086 24611.9 0.985 Illumina NovaSeq 6000 paired end sequencing
ERX5626062 Mononuclear 0.831 6.5 45450 1221.1 81 986.1 1445 19092.1 0.992 Illumina NovaSeq 6000 paired end sequencing
ERX5626063 Mononuclear 0.829 6.4 43980 1221.4 73 965.1 1494 14379.0 0.989 Illumina NovaSeq 6000 paired end sequencing
ERX5626064 Mononuclear 0.831 6.3 43558 1198.5 78 937.6 1895 14803.4 0.994 Illumina NovaSeq 6000 paired end sequencing

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.