Mouse methylome studies SRP464133 Track Settings
 
Increased global DNA methylation disrupts skeletal muscle homeostasis, promotes age-related decline in muscle function, and reduces muscle plasticity [Skeletal Muscle, Iibialis Anterior]

Track collection: Mouse methylome studies

+  All tracks in this collection (575)

Maximum display mode:       Reset to defaults   
Select views (Help):
HMR       CpG methylation ▾       PMD       CpG reads ▾       AMR      
Select subtracks by views and experiment:
 All views HMR  CpG methylation  PMD  CpG reads  AMR 
experiment
SRX21962690 
SRX21962691 
SRX21962692 
SRX21962693 
SRX21962694 
SRX21962695 
SRX21962696 
SRX21962697 
SRX21962698 
SRX21962699 
SRX21962700 
SRX21962701 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX21962690  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962690 (HMR)   Data format 
hide
 Configure
 SRX21962690  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962690 (CpG methylation)   Data format 
hide
 SRX21962691  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962691 (HMR)   Data format 
hide
 Configure
 SRX21962691  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962691 (CpG methylation)   Data format 
hide
 SRX21962692  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962692 (HMR)   Data format 
hide
 Configure
 SRX21962692  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962692 (CpG methylation)   Data format 
hide
 SRX21962693  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962693 (HMR)   Data format 
hide
 Configure
 SRX21962693  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962693 (CpG methylation)   Data format 
hide
 SRX21962694  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962694 (HMR)   Data format 
hide
 Configure
 SRX21962694  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962694 (CpG methylation)   Data format 
hide
 SRX21962695  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962695 (HMR)   Data format 
hide
 Configure
 SRX21962695  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962695 (CpG methylation)   Data format 
hide
 SRX21962696  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962696 (HMR)   Data format 
hide
 Configure
 SRX21962696  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962696 (CpG methylation)   Data format 
hide
 SRX21962697  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962697 (HMR)   Data format 
hide
 Configure
 SRX21962697  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962697 (CpG methylation)   Data format 
hide
 SRX21962698  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962698 (HMR)   Data format 
hide
 Configure
 SRX21962698  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962698 (CpG methylation)   Data format 
hide
 SRX21962699  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962699 (HMR)   Data format 
hide
 Configure
 SRX21962699  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962699 (CpG methylation)   Data format 
hide
 SRX21962700  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962700 (HMR)   Data format 
hide
 Configure
 SRX21962700  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962700 (CpG methylation)   Data format 
hide
 SRX21962701  HMR  Skeletal Muscle, Iibialis Anterior / SRX21962701 (HMR)   Data format 
hide
 Configure
 SRX21962701  CpG methylation  Skeletal Muscle, Iibialis Anterior / SRX21962701 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Increased global DNA methylation disrupts skeletal muscle homeostasis, promotes age-related decline in muscle function, and reduces muscle plasticity
SRA: SRP464133
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX21962690 Skeletal Muscle, Iibialis Anterior 0.649 8.9 38696 1273.1 1030 875.0 897 16410.4 0.988 GSM7816049: Dnmt3a-KO replicate 1; Mus musculus; Bisulfite-Seq
SRX21962691 Skeletal Muscle, Iibialis Anterior 0.655 11.2 40103 1219.3 1916 849.8 1009 13960.6 0.988 GSM7816050: Dnmt3a-KO replicate 2; Mus musculus; Bisulfite-Seq
SRX21962692 Skeletal Muscle, Iibialis Anterior 0.649 8.4 38472 1281.9 953 866.3 728 17440.7 0.988 GSM7816051: Dnmt3a-KO replicate 3; Mus musculus; Bisulfite-Seq
SRX21962693 Skeletal Muscle, Iibialis Anterior 0.709 6.3 27734 1285.1 494 975.0 406 22081.6 0.964 GSM7816052: Dnmt3a-Tg replicate 1; Mus musculus; Bisulfite-Seq
SRX21962694 Skeletal Muscle, Iibialis Anterior 0.719 6.4 26895 1274.2 718 964.7 395 21776.5 0.953 GSM7816053: Dnmt3a-Tg replicate 2; Mus musculus; Bisulfite-Seq
SRX21962695 Skeletal Muscle, Iibialis Anterior 0.725 5.0 25793 1324.2 326 956.2 282 27531.5 0.950 GSM7816054: Dnmt3a-Tg replicate 3; Mus musculus; Bisulfite-Seq
SRX21962696 Skeletal Muscle, Iibialis Anterior 0.670 4.7 30560 1412.8 120 988.9 456 22138.4 0.985 GSM7816055: WT_KO replicate 1; Mus musculus; Bisulfite-Seq
SRX21962697 Skeletal Muscle, Iibialis Anterior 0.674 6.0 32071 1298.8 199 909.5 466 18819.5 0.986 GSM7816056: WT_Tg replicate 1; Mus musculus; Bisulfite-Seq
SRX21962698 Skeletal Muscle, Iibialis Anterior 0.671 5.4 29913 1406.2 227 1055.0 350 25356.5 0.987 GSM7816057: WT_KO replicate 2; Mus musculus; Bisulfite-Seq
SRX21962699 Skeletal Muscle, Iibialis Anterior 0.674 5.4 30733 1358.0 126 1019.9 504 19165.8 0.987 GSM7816058: WT_Tg replicate 2; Mus musculus; Bisulfite-Seq
SRX21962700 Skeletal Muscle, Iibialis Anterior 0.678 6.7 32948 1269.4 273 928.2 503 20480.1 0.986 GSM7816059: WT_KO replicate 3; Mus musculus; Bisulfite-Seq
SRX21962701 Skeletal Muscle, Iibialis Anterior 0.677 5.3 32249 1316.6 143 935.5 396 20162.4 0.986 GSM7816060: WT_Tg replicate 3; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.