Human methylome studies SRP449432 Track Settings
 
Integrative Analysis of Genome-Wide Epigenetic and Transcriptomic Alterations Reveals Molecular Markers for Diagnosing Pediatric Obstructive Sleep Apnea in Black Females [WGBS] [SRS18286442, SRS18286443, SRS18286444, SRS18286445, SRS18286446, SRS18286447, SRS18286448, SRS18286449, SRS18286450, SRS18286451, SRS18286452, SRS18286453, SRS18286454, SRS18286455, SRS18286456, SRS18286457, SRS18286458, SRS18286459]

Track collection: Human methylome studies

+  All tracks in this collection (426)

Maximum display mode:       Reset to defaults   
Select views (Help):
CpG reads ▾       PMD       CpG methylation ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views CpG reads  PMD  CpG methylation  AMR  HMR 
experiment
SRX21013586 
SRX21013587 
SRX21013588 
SRX21013589 
SRX21013590 
SRX21013591 
SRX21013592 
SRX21013593 
SRX21013594 
SRX21013595 
SRX21013596 
SRX21013597 
SRX21013598 
SRX21013599 
SRX21013600 
SRX21013601 
SRX21013602 
SRX21013603 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX21013586  HMR  SRS18286443 / SRX21013586 (HMR)   Data format 
hide
 Configure
 SRX21013586  CpG methylation  SRS18286443 / SRX21013586 (CpG methylation)   Data format 
hide
 SRX21013587  HMR  SRS18286442 / SRX21013587 (HMR)   Data format 
hide
 Configure
 SRX21013587  CpG methylation  SRS18286442 / SRX21013587 (CpG methylation)   Data format 
hide
 SRX21013588  HMR  SRS18286445 / SRX21013588 (HMR)   Data format 
hide
 Configure
 SRX21013588  CpG methylation  SRS18286445 / SRX21013588 (CpG methylation)   Data format 
hide
 SRX21013589  HMR  SRS18286444 / SRX21013589 (HMR)   Data format 
hide
 Configure
 SRX21013589  CpG methylation  SRS18286444 / SRX21013589 (CpG methylation)   Data format 
hide
 SRX21013590  HMR  SRS18286449 / SRX21013590 (HMR)   Data format 
hide
 Configure
 SRX21013590  CpG methylation  SRS18286449 / SRX21013590 (CpG methylation)   Data format 
hide
 SRX21013591  HMR  SRS18286447 / SRX21013591 (HMR)   Data format 
hide
 Configure
 SRX21013591  CpG methylation  SRS18286447 / SRX21013591 (CpG methylation)   Data format 
hide
 SRX21013592  HMR  SRS18286448 / SRX21013592 (HMR)   Data format 
hide
 Configure
 SRX21013592  CpG methylation  SRS18286448 / SRX21013592 (CpG methylation)   Data format 
hide
 SRX21013593  HMR  SRS18286446 / SRX21013593 (HMR)   Data format 
hide
 Configure
 SRX21013593  CpG methylation  SRS18286446 / SRX21013593 (CpG methylation)   Data format 
hide
 SRX21013594  HMR  SRS18286450 / SRX21013594 (HMR)   Data format 
hide
 Configure
 SRX21013594  CpG methylation  SRS18286450 / SRX21013594 (CpG methylation)   Data format 
hide
 SRX21013595  HMR  SRS18286453 / SRX21013595 (HMR)   Data format 
hide
 Configure
 SRX21013595  CpG methylation  SRS18286453 / SRX21013595 (CpG methylation)   Data format 
hide
 SRX21013596  HMR  SRS18286451 / SRX21013596 (HMR)   Data format 
hide
 Configure
 SRX21013596  CpG methylation  SRS18286451 / SRX21013596 (CpG methylation)   Data format 
hide
 SRX21013597  HMR  SRS18286452 / SRX21013597 (HMR)   Data format 
hide
 Configure
 SRX21013597  CpG methylation  SRS18286452 / SRX21013597 (CpG methylation)   Data format 
hide
 SRX21013598  HMR  SRS18286454 / SRX21013598 (HMR)   Data format 
hide
 Configure
 SRX21013598  CpG methylation  SRS18286454 / SRX21013598 (CpG methylation)   Data format 
hide
 SRX21013599  HMR  SRS18286455 / SRX21013599 (HMR)   Data format 
hide
 Configure
 SRX21013599  CpG methylation  SRS18286455 / SRX21013599 (CpG methylation)   Data format 
hide
 SRX21013600  HMR  SRS18286456 / SRX21013600 (HMR)   Data format 
hide
 Configure
 SRX21013600  CpG methylation  SRS18286456 / SRX21013600 (CpG methylation)   Data format 
hide
 SRX21013601  HMR  SRS18286457 / SRX21013601 (HMR)   Data format 
hide
 Configure
 SRX21013601  CpG methylation  SRS18286457 / SRX21013601 (CpG methylation)   Data format 
hide
 SRX21013602  HMR  SRS18286459 / SRX21013602 (HMR)   Data format 
hide
 Configure
 SRX21013602  CpG methylation  SRS18286459 / SRX21013602 (CpG methylation)   Data format 
hide
 SRX21013603  HMR  SRS18286458 / SRX21013603 (HMR)   Data format 
hide
 Configure
 SRX21013603  CpG methylation  SRS18286458 / SRX21013603 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Integrative Analysis of Genome-Wide Epigenetic and Transcriptomic Alterations Reveals Molecular Markers for Diagnosing Pediatric Obstructive Sleep Apnea in Black Females [WGBS]
SRA: SRP449432
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX21013586 SRS18286443 0.731 25.2 52543 972.8 6664 940.6 3293 10038.1 0.989 GSM7601027: EPIA01DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013587 SRS18286442 0.739 23.6 54955 965.3 5443 943.2 3486 9461.2 0.990 GSM7601028: EPIA02DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013588 SRS18286445 0.724 26.1 48029 997.1 10092 963.7 3497 10517.7 0.991 GSM7601031: EPIA04DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013589 SRS18286444 0.732 27.3 50168 1014.2 9714 961.3 3437 9986.2 0.988 GSM7601029: EPIA03DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013590 SRS18286449 0.735 29.0 64496 921.1 2065 1000.5 3515 10091.3 0.991 GSM7601037: EPIA09DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013591 SRS18286447 0.741 20.8 44792 1025.6 8328 954.9 3660 9018.6 0.990 GSM7601038: EPIC01DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq
SRX21013592 SRS18286448 0.745 26.4 61278 954.6 3922 943.7 3782 9928.5 0.989 GSM7601040: EPIC03DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq
SRX21013593 SRS18286446 0.708 26.2 56605 1065.0 6041 944.9 3701 9787.4 0.990 GSM7601041: EPIC04DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq
SRX21013594 SRS18286450 0.737 28.2 51240 977.0 10150 961.8 3979 8627.5 0.992 GSM7601042: EPIC05DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq
SRX21013595 SRS18286453 0.730 28.8 52019 976.8 9270 943.6 3515 10854.1 0.991 GSM7601032: EPIA05DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013596 SRS18286451 0.721 29.7 64468 922.2 3200 963.5 3726 9278.1 0.991 GSM7601033: EPIA06DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013597 SRS18286452 0.730 31.2 59092 956.9 6129 942.3 3687 9721.5 0.991 GSM7601034: EPIA07DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013598 SRS18286454 0.695 25.5 52914 1057.7 5364 936.5 2926 10553.7 0.990 GSM7601036: EPIA08DNA_Patient_OSA; Homo sapiens; Bisulfite-Seq
SRX21013599 SRS18286455 0.743 28.2 64708 939.9 3295 956.2 3326 10446.7 0.991 GSM7601043: EPIC06DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq
SRX21013600 SRS18286456 0.751 25.3 56733 999.8 2657 952.4 3118 11157.7 0.986 GSM7601045: EPIC07DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq
SRX21013601 SRS18286457 0.737 23.5 51602 982.5 7223 956.9 3767 9131.2 0.991 GSM7601046: EPIC08DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq
SRX21013602 SRS18286459 0.728 29.0 51318 1008.5 9809 957.4 3303 10060.2 0.991 GSM7601047: EPIC09DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq
SRX21013603 SRS18286458 0.752 28.3 71762 889.9 1523 1047.6 3871 10109.9 0.991 GSM7601048: EPIC10DNA_Healthy_Control; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.