Mouse methylome studies SRP422816 Track Settings
 
Distinct disease mutations in DNMT3A result in a spectrum of behavioral, epigenetic, and transcriptional disruptions [Cortex]

Track collection: Mouse methylome studies

+  All tracks in this collection (575)

Maximum display mode:       Reset to defaults   
Select views (Help):
HMR       CpG methylation ▾       PMD       CpG reads ▾       AMR      
Select subtracks by views and experiment:
 All views HMR  CpG methylation  PMD  CpG reads  AMR 
experiment
SRX19383779 
SRX19383780 
SRX19383781 
SRX19383782 
SRX19383783 
SRX19383784 
SRX19383785 
SRX19383786 
SRX19383787 
SRX19383788 
SRX19383789 
SRX19383790 
SRX19383791 
SRX19383792 
SRX19383793 
SRX19383794 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX19383779  HMR  Cortex / SRX19383779 (HMR)   Data format 
hide
 Configure
 SRX19383779  CpG methylation  Cortex / SRX19383779 (CpG methylation)   Data format 
hide
 SRX19383780  HMR  Cortex / SRX19383780 (HMR)   Data format 
hide
 Configure
 SRX19383780  CpG methylation  Cortex / SRX19383780 (CpG methylation)   Data format 
hide
 SRX19383781  HMR  Cortex / SRX19383781 (HMR)   Data format 
hide
 Configure
 SRX19383781  CpG methylation  Cortex / SRX19383781 (CpG methylation)   Data format 
hide
 SRX19383782  HMR  Cortex / SRX19383782 (HMR)   Data format 
hide
 Configure
 SRX19383782  CpG methylation  Cortex / SRX19383782 (CpG methylation)   Data format 
hide
 SRX19383783  HMR  Cortex / SRX19383783 (HMR)   Data format 
hide
 Configure
 SRX19383783  CpG methylation  Cortex / SRX19383783 (CpG methylation)   Data format 
hide
 SRX19383784  HMR  Cortex / SRX19383784 (HMR)   Data format 
hide
 Configure
 SRX19383784  CpG methylation  Cortex / SRX19383784 (CpG methylation)   Data format 
hide
 SRX19383785  HMR  Cortex / SRX19383785 (HMR)   Data format 
hide
 Configure
 SRX19383785  CpG methylation  Cortex / SRX19383785 (CpG methylation)   Data format 
hide
 SRX19383786  HMR  Cortex / SRX19383786 (HMR)   Data format 
hide
 Configure
 SRX19383786  CpG methylation  Cortex / SRX19383786 (CpG methylation)   Data format 
hide
 SRX19383787  HMR  Cortex / SRX19383787 (HMR)   Data format 
hide
 Configure
 SRX19383787  CpG methylation  Cortex / SRX19383787 (CpG methylation)   Data format 
hide
 SRX19383788  HMR  Cortex / SRX19383788 (HMR)   Data format 
hide
 Configure
 SRX19383788  CpG methylation  Cortex / SRX19383788 (CpG methylation)   Data format 
hide
 SRX19383789  HMR  Cortex / SRX19383789 (HMR)   Data format 
hide
 Configure
 SRX19383789  CpG methylation  Cortex / SRX19383789 (CpG methylation)   Data format 
hide
 SRX19383790  HMR  Cortex / SRX19383790 (HMR)   Data format 
hide
 Configure
 SRX19383790  CpG methylation  Cortex / SRX19383790 (CpG methylation)   Data format 
hide
 SRX19383791  HMR  Cortex / SRX19383791 (HMR)   Data format 
hide
 Configure
 SRX19383791  CpG methylation  Cortex / SRX19383791 (CpG methylation)   Data format 
hide
 SRX19383792  HMR  Cortex / SRX19383792 (HMR)   Data format 
hide
 Configure
 SRX19383792  CpG methylation  Cortex / SRX19383792 (CpG methylation)   Data format 
hide
 SRX19383793  HMR  Cortex / SRX19383793 (HMR)   Data format 
hide
 Configure
 SRX19383793  CpG methylation  Cortex / SRX19383793 (CpG methylation)   Data format 
hide
 SRX19383794  HMR  Cortex / SRX19383794 (HMR)   Data format 
hide
 Configure
 SRX19383794  CpG methylation  Cortex / SRX19383794 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Distinct disease mutations in DNMT3A result in a spectrum of behavioral, epigenetic, and transcriptional disruptions
SRA: SRP422816
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX19383779 Cortex 0.736 7.3 43169 1379.7 576 884.7 1734 14602.9 0.982 GSM7047606: WGBS_P900L_F_306-2; Mus musculus; Bisulfite-Seq
SRX19383780 Cortex 0.731 9.3 46414 1282.9 1274 875.8 1584 14443.5 0.983 GSM7047607: WGBS_P900L_F_306-3; Mus musculus; Bisulfite-Seq
SRX19383781 Cortex 0.737 9.3 44988 1278.9 786 871.0 1736 13896.2 0.984 GSM7047608: WGBS_P900L_M_706-5; Mus musculus; Bisulfite-Seq
SRX19383782 Cortex 0.729 9.5 45989 1273.4 1254 835.4 1562 14426.2 0.983 GSM7047609: WGBS_P900L_M_753-1; Mus musculus; Bisulfite-Seq
SRX19383783 Cortex 0.760 7.9 39484 1267.5 812 881.5 1750 12672.2 0.979 GSM7047610: WGBS_pWT_F_306-1; Mus musculus; Bisulfite-Seq
SRX19383784 Cortex 0.759 7.0 41146 1319.7 890 881.0 1254 20234.2 0.977 GSM7047611: WGBS_pWT_F_306-4; Mus musculus; Bisulfite-Seq
SRX19383785 Cortex 0.756 9.4 39794 1223.1 1112 845.7 1753 12732.2 0.979 GSM7047612: WGBS_pWT_M_706-6; Mus musculus; Bisulfite-Seq
SRX19383786 Cortex 0.756 12.0 41757 1198.9 2389 826.8 1797 13268.2 0.978 GSM7047613: WGBS_pWT_M_753-2; Mus musculus; Bisulfite-Seq
SRX19383787 Cortex 0.726 8.9 50554 1380.6 631 889.9 1951 16543.6 0.986 GSM7047614: WGBS_R878H_F_697-1; Mus musculus; Bisulfite-Seq
SRX19383788 Cortex 0.708 10.1 51632 1331.7 1073 840.0 2055 14991.0 0.986 GSM7047615: WGBS_R878H_F_697-4; Mus musculus; Bisulfite-Seq
SRX19383789 Cortex 0.721 7.1 46508 1460.8 482 912.4 1492 21523.3 0.985 GSM7047616: WGBS_R878H_M_696-1; Mus musculus; Bisulfite-Seq
SRX19383790 Cortex 0.710 19.0 59597 1283.1 2613 858.0 3464 10830.2 0.985 GSM7047617: WGBS_R878H_M_698-4; Mus musculus; Bisulfite-Seq
SRX19383791 Cortex 0.776 6.5 36764 1353.6 394 880.1 1246 19019.3 0.978 GSM7047618: WGBS_rWT_F_697-2; Mus musculus; Bisulfite-Seq
SRX19383792 Cortex 0.754 6.1 36306 1322.3 278 934.9 1058 16847.0 0.978 GSM7047619: WGBS_rWT_F_697-3; Mus musculus; Bisulfite-Seq
SRX19383793 Cortex 0.761 11.7 43175 1225.5 2469 828.2 2171 13792.9 0.976 GSM7047620: WGBS_rWT_M_696-2; Mus musculus; Bisulfite-Seq
SRX19383794 Cortex 0.769 19.3 47633 1188.8 4399 856.2 3448 9403.0 0.977 GSM7047621: WGBS_rWT_M_698-3; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.