Human methylome studies SRP357372 Track Settings
 
WGBS and RNA-seq of HUVECs transfected with siNC or siTET2 [Umbilical Vein Endothelial Cells]

Track collection: Human methylome studies

+  All tracks in this collection (438)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       HMR       PMD       CpG methylation ▾      
Select subtracks by views and experiment:
 All views AMR  CpG reads  HMR  PMD  CpG methylation 
experiment
SRX13980490 
SRX13980491 
SRX13980492 
SRX13980493 
SRX13980494 
SRX13980495 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX13980490  HMR  Umbilical Vein Endothelial Cells / SRX13980490 (HMR)   Data format 
hide
 SRX13980490  AMR  Umbilical Vein Endothelial Cells / SRX13980490 (AMR)   Data format 
hide
 SRX13980490  PMD  Umbilical Vein Endothelial Cells / SRX13980490 (PMD)   Data format 
hide
 Configure
 SRX13980490  CpG methylation  Umbilical Vein Endothelial Cells / SRX13980490 (CpG methylation)   Data format 
hide
 Configure
 SRX13980490  CpG reads  Umbilical Vein Endothelial Cells / SRX13980490 (CpG reads)   Data format 
hide
 SRX13980491  HMR  Umbilical Vein Endothelial Cells / SRX13980491 (HMR)   Data format 
hide
 SRX13980491  AMR  Umbilical Vein Endothelial Cells / SRX13980491 (AMR)   Data format 
hide
 SRX13980491  PMD  Umbilical Vein Endothelial Cells / SRX13980491 (PMD)   Data format 
hide
 Configure
 SRX13980491  CpG methylation  Umbilical Vein Endothelial Cells / SRX13980491 (CpG methylation)   Data format 
hide
 Configure
 SRX13980491  CpG reads  Umbilical Vein Endothelial Cells / SRX13980491 (CpG reads)   Data format 
hide
 SRX13980492  HMR  Umbilical Vein Endothelial Cells / SRX13980492 (HMR)   Data format 
hide
 SRX13980492  AMR  Umbilical Vein Endothelial Cells / SRX13980492 (AMR)   Data format 
hide
 SRX13980492  PMD  Umbilical Vein Endothelial Cells / SRX13980492 (PMD)   Data format 
hide
 Configure
 SRX13980492  CpG methylation  Umbilical Vein Endothelial Cells / SRX13980492 (CpG methylation)   Data format 
hide
 Configure
 SRX13980492  CpG reads  Umbilical Vein Endothelial Cells / SRX13980492 (CpG reads)   Data format 
hide
 SRX13980493  HMR  Umbilical Vein Endothelial Cells / SRX13980493 (HMR)   Data format 
hide
 SRX13980493  AMR  Umbilical Vein Endothelial Cells / SRX13980493 (AMR)   Data format 
hide
 SRX13980493  PMD  Umbilical Vein Endothelial Cells / SRX13980493 (PMD)   Data format 
hide
 Configure
 SRX13980493  CpG methylation  Umbilical Vein Endothelial Cells / SRX13980493 (CpG methylation)   Data format 
hide
 Configure
 SRX13980493  CpG reads  Umbilical Vein Endothelial Cells / SRX13980493 (CpG reads)   Data format 
hide
 SRX13980494  HMR  Umbilical Vein Endothelial Cells / SRX13980494 (HMR)   Data format 
hide
 SRX13980494  AMR  Umbilical Vein Endothelial Cells / SRX13980494 (AMR)   Data format 
hide
 SRX13980494  PMD  Umbilical Vein Endothelial Cells / SRX13980494 (PMD)   Data format 
hide
 Configure
 SRX13980494  CpG methylation  Umbilical Vein Endothelial Cells / SRX13980494 (CpG methylation)   Data format 
hide
 Configure
 SRX13980494  CpG reads  Umbilical Vein Endothelial Cells / SRX13980494 (CpG reads)   Data format 
hide
 SRX13980495  HMR  Umbilical Vein Endothelial Cells / SRX13980495 (HMR)   Data format 
hide
 SRX13980495  AMR  Umbilical Vein Endothelial Cells / SRX13980495 (AMR)   Data format 
hide
 SRX13980495  PMD  Umbilical Vein Endothelial Cells / SRX13980495 (PMD)   Data format 
hide
 Configure
 SRX13980495  CpG methylation  Umbilical Vein Endothelial Cells / SRX13980495 (CpG methylation)   Data format 
hide
 Configure
 SRX13980495  CpG reads  Umbilical Vein Endothelial Cells / SRX13980495 (CpG reads)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: WGBS and RNA-seq of HUVECs transfected with siNC or siTET2
SRA: SRP357372
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX13980490 Umbilical Vein Endothelial Cells 0.708 17.8 61889 1051.5 826 1103.7 4154 23698.0 0.994 GSM5848514: siNC+EndMT1.WGBS; Homo sapiens; Bisulfite-Seq
SRX13980491 Umbilical Vein Endothelial Cells 0.728 15.4 58608 1089.6 419 1163.1 4785 29090.5 0.994 GSM5848515: siNC+EndMT2.WGBS; Homo sapiens; Bisulfite-Seq
SRX13980492 Umbilical Vein Endothelial Cells 0.712 20.6 64841 1084.6 844 1127.4 5103 28281.9 0.993 GSM5848516: siNC+EndMT3.WGBS; Homo sapiens; Bisulfite-Seq
SRX13980493 Umbilical Vein Endothelial Cells 0.725 15.3 59292 1129.1 1008 1041.5 5971 34726.7 0.991 GSM5848517: siTET2+EndMT1.WGBS; Homo sapiens; Bisulfite-Seq
SRX13980494 Umbilical Vein Endothelial Cells 0.742 10.1 49234 1260.4 247 1089.0 4441 28046.9 0.992 GSM5848518: siTET2+EndMT2.WGBS; Homo sapiens; Bisulfite-Seq
SRX13980495 Umbilical Vein Endothelial Cells 0.712 20.9 65290 1079.0 826 1102.7 5415 27490.0 0.994 GSM5848519: siTET2+EndMT3.WGBS; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.