Mouse methylome studies SRP309644 Track Settings
 
DNMT3B supports meso-endoderm differentiation from mouse embryonic stem cells [WGBS] [ES-E14, ES-E14 Derived EpiSC, EpiLC-derived ME]

Track collection: Mouse methylome studies

+  All tracks in this collection (575)

Maximum display mode:       Reset to defaults   
Select views (Help):
HMR       CpG methylation ▾       PMD       CpG reads ▾       AMR      
Select subtracks by views and experiment:
 All views HMR  CpG methylation  PMD  CpG reads  AMR 
experiment
SRX10254319 
SRX10254320 
SRX10254321 
SRX10254322 
SRX10254323 
SRX10254324 
SRX10254325 
SRX10254326 
SRX16085493 
SRX16085494 
SRX16085495 
SRX16085496 
SRX16085497 
SRX16085498 
SRX16085499 
SRX16085500 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX10254319  HMR  ES-E14 / SRX10254319 (HMR)   Data format 
hide
 Configure
 SRX10254319  CpG methylation  ES-E14 / SRX10254319 (CpG methylation)   Data format 
hide
 SRX10254320  HMR  ES-E14 / SRX10254320 (HMR)   Data format 
hide
 Configure
 SRX10254320  CpG methylation  ES-E14 / SRX10254320 (CpG methylation)   Data format 
hide
 SRX10254321  HMR  ES-E14 / SRX10254321 (HMR)   Data format 
hide
 Configure
 SRX10254321  CpG methylation  ES-E14 / SRX10254321 (CpG methylation)   Data format 
hide
 SRX10254322  HMR  ES-E14 / SRX10254322 (HMR)   Data format 
hide
 Configure
 SRX10254322  CpG methylation  ES-E14 / SRX10254322 (CpG methylation)   Data format 
hide
 SRX10254323  HMR  ES-E14 Derived EpiSC / SRX10254323 (HMR)   Data format 
hide
 Configure
 SRX10254323  CpG methylation  ES-E14 Derived EpiSC / SRX10254323 (CpG methylation)   Data format 
hide
 SRX10254324  HMR  ES-E14 Derived EpiSC / SRX10254324 (HMR)   Data format 
hide
 Configure
 SRX10254324  CpG methylation  ES-E14 Derived EpiSC / SRX10254324 (CpG methylation)   Data format 
hide
 SRX10254325  HMR  ES-E14 Derived EpiSC / SRX10254325 (HMR)   Data format 
hide
 Configure
 SRX10254325  CpG methylation  ES-E14 Derived EpiSC / SRX10254325 (CpG methylation)   Data format 
hide
 SRX10254326  HMR  ES-E14 Derived EpiSC / SRX10254326 (HMR)   Data format 
hide
 Configure
 SRX10254326  CpG methylation  ES-E14 Derived EpiSC / SRX10254326 (CpG methylation)   Data format 
hide
 SRX16085493  HMR  EpiLC-derived ME / SRX16085493 (HMR)   Data format 
hide
 Configure
 SRX16085493  CpG methylation  EpiLC-derived ME / SRX16085493 (CpG methylation)   Data format 
hide
 SRX16085494  HMR  EpiLC-derived ME / SRX16085494 (HMR)   Data format 
hide
 Configure
 SRX16085494  CpG methylation  EpiLC-derived ME / SRX16085494 (CpG methylation)   Data format 
hide
 SRX16085495  HMR  EpiLC-derived ME / SRX16085495 (HMR)   Data format 
hide
 Configure
 SRX16085495  CpG methylation  EpiLC-derived ME / SRX16085495 (CpG methylation)   Data format 
hide
 SRX16085496  HMR  EpiLC-derived ME / SRX16085496 (HMR)   Data format 
hide
 Configure
 SRX16085496  CpG methylation  EpiLC-derived ME / SRX16085496 (CpG methylation)   Data format 
hide
 SRX16085497  HMR  EpiLC-derived ME / SRX16085497 (HMR)   Data format 
hide
 Configure
 SRX16085497  CpG methylation  EpiLC-derived ME / SRX16085497 (CpG methylation)   Data format 
hide
 SRX16085498  HMR  EpiLC-derived ME / SRX16085498 (HMR)   Data format 
hide
 Configure
 SRX16085498  CpG methylation  EpiLC-derived ME / SRX16085498 (CpG methylation)   Data format 
hide
 SRX16085499  HMR  EpiLC-derived ME / SRX16085499 (HMR)   Data format 
hide
 Configure
 SRX16085499  CpG methylation  EpiLC-derived ME / SRX16085499 (CpG methylation)   Data format 
hide
 SRX16085500  HMR  EpiLC-derived ME / SRX16085500 (HMR)   Data format 
hide
 Configure
 SRX16085500  CpG methylation  EpiLC-derived ME / SRX16085500 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: DNMT3B supports meso-endoderm differentiation from mouse embryonic stem cells [WGBS]
SRA: SRP309644
GEO: GSE168413
Pubmed: 36690616

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX10254319 ES-E14 0.716 22.4 52701 1608.6 419 1055.9 5600 16921.1 0.997 GSM5138751: WGBS_ESC_WT_Rep1; Mus musculus; Bisulfite-Seq
SRX10254320 ES-E14 0.745 19.2 49278 1742.2 281 1048.1 5466 18993.5 0.996 GSM5138752: WGBS_ESC_WT_Rep2; Mus musculus; Bisulfite-Seq
SRX10254321 ES-E14 0.645 24.6 62294 1499.4 327 1223.2 5577 15683.7 0.998 GSM5138753: WGBS_ESC_3BKO_B126; Mus musculus; Bisulfite-Seq
SRX10254322 ES-E14 0.721 26.5 64325 1434.4 366 987.4 6008 16351.4 0.998 GSM5138754: WGBS_ESC_3BKO_B77; Mus musculus; Bisulfite-Seq
SRX10254323 ES-E14 Derived EpiSC 0.798 20.4 39100 1204.6 1357 975.0 5623 16662.6 0.995 GSM5138755: WGBS_EpiSC_WT_Rep1; Mus musculus; Bisulfite-Seq
SRX10254324 ES-E14 Derived EpiSC 0.813 18.6 37618 1260.7 695 1006.0 5861 15872.4 0.995 GSM5138756: WGBS_EpiSC_WT_Rep2; Mus musculus; Bisulfite-Seq
SRX10254325 ES-E14 Derived EpiSC 0.695 24.0 54533 1179.3 345 937.8 3925 14332.9 0.999 GSM5138757: WGBS_EpiSC_3BKO_B126; Mus musculus; Bisulfite-Seq
SRX10254326 ES-E14 Derived EpiSC 0.705 25.1 55526 1114.1 436 987.5 3780 13586.8 0.999 GSM5138758: WGBS_EpiSC_3BKO_B77; Mus musculus; Bisulfite-Seq
SRX16085493 EpiLC-derived ME 0.723 6.4 33179 2322.0 6742 980.9 1727 55197.9 0.983 GSM6311163: WGBS_ME24h_B126_Rep1; Mus musculus; Bisulfite-Seq
SRX16085494 EpiLC-derived ME 0.743 7.5 36180 1436.5 303 1241.6 1562 30733.5 0.992 GSM6311164: WGBS_ME24h_B77_Rep1; Mus musculus; Bisulfite-Seq
SRX16085495 EpiLC-derived ME 0.816 8.2 27796 1407.9 611 1106.0 3018 24446.0 0.996 GSM6311165: WGBS_ME24h_WT_Rep1; Mus musculus; Bisulfite-Seq
SRX16085496 EpiLC-derived ME 0.852 8.4 39517 1678.2 334 1050.4 3332 43213.1 0.949 GSM6311166: WGBS_ME24h_WT_Rep2; Mus musculus; Bisulfite-Seq
SRX16085497 EpiLC-derived ME 0.736 4.6 33393 2028.5 1301 1027.6 1139 80908.3 0.968 GSM6311167: WGBS_ME48h_B126_Rep1; Mus musculus; Bisulfite-Seq
SRX16085498 EpiLC-derived ME 0.738 6.2 32388 2211.4 7737 1027.8 1103 69717.2 0.954 GSM6311168: WGBS_ME48h_B77_Rep1; Mus musculus; Bisulfite-Seq
SRX16085499 EpiLC-derived ME 0.809 8.5 30016 1768.4 623 1038.4 2902 28288.5 0.989 GSM6311169: WGBS_ME48h_WT_Rep1; Mus musculus; Bisulfite-Seq
SRX16085500 EpiLC-derived ME 0.806 6.8 26813 1439.1 450 1113.5 2097 34837.9 0.993 GSM6311170: WGBS_ME48h_WT_Rep2; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.