Human methylome studies SRP237955 Track Settings
 
Molecular atlas of fetal and adult human liver sinusoidal endothelial cells: a F8 secreting cell [methylation III] [Hepatic Sinusoidal Endothelial Cells]

Track collection: Human methylome studies

+  All tracks in this collection (438)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       HMR       PMD       CpG methylation ▾      
Select subtracks by views and experiment:
 All views AMR  CpG reads  HMR  PMD  CpG methylation 
experiment
SRX7398089 
SRX7398090 
SRX7398091 
SRX7398092 
SRX7398093 
SRX7398094 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX7398089  HMR  Hepatic Sinusoidal Endothelial Cells / SRX7398089 (HMR)   Data format 
hide
 SRX7398089  AMR  Hepatic Sinusoidal Endothelial Cells / SRX7398089 (AMR)   Data format 
hide
 SRX7398089  PMD  Hepatic Sinusoidal Endothelial Cells / SRX7398089 (PMD)   Data format 
hide
 Configure
 SRX7398089  CpG methylation  Hepatic Sinusoidal Endothelial Cells / SRX7398089 (CpG methylation)   Data format 
hide
 Configure
 SRX7398089  CpG reads  Hepatic Sinusoidal Endothelial Cells / SRX7398089 (CpG reads)   Data format 
hide
 SRX7398090  HMR  Hepatic Sinusoidal Endothelial Cells / SRX7398090 (HMR)   Data format 
hide
 SRX7398090  PMD  Hepatic Sinusoidal Endothelial Cells / SRX7398090 (PMD)   Data format 
hide
 Configure
 SRX7398090  CpG methylation  Hepatic Sinusoidal Endothelial Cells / SRX7398090 (CpG methylation)   Data format 
hide
 Configure
 SRX7398090  CpG reads  Hepatic Sinusoidal Endothelial Cells / SRX7398090 (CpG reads)   Data format 
hide
 SRX7398091  HMR  Hepatic Sinusoidal Endothelial Cells / SRX7398091 (HMR)   Data format 
hide
 SRX7398091  AMR  Hepatic Sinusoidal Endothelial Cells / SRX7398091 (AMR)   Data format 
hide
 SRX7398091  PMD  Hepatic Sinusoidal Endothelial Cells / SRX7398091 (PMD)   Data format 
hide
 Configure
 SRX7398091  CpG methylation  Hepatic Sinusoidal Endothelial Cells / SRX7398091 (CpG methylation)   Data format 
hide
 Configure
 SRX7398091  CpG reads  Hepatic Sinusoidal Endothelial Cells / SRX7398091 (CpG reads)   Data format 
hide
 SRX7398092  HMR  Hepatic Sinusoidal Endothelial Cells / SRX7398092 (HMR)   Data format 
hide
 SRX7398092  PMD  Hepatic Sinusoidal Endothelial Cells / SRX7398092 (PMD)   Data format 
hide
 Configure
 SRX7398092  CpG methylation  Hepatic Sinusoidal Endothelial Cells / SRX7398092 (CpG methylation)   Data format 
hide
 Configure
 SRX7398092  CpG reads  Hepatic Sinusoidal Endothelial Cells / SRX7398092 (CpG reads)   Data format 
hide
 SRX7398093  HMR  Hepatic Sinusoidal Endothelial Cells / SRX7398093 (HMR)   Data format 
hide
 SRX7398093  AMR  Hepatic Sinusoidal Endothelial Cells / SRX7398093 (AMR)   Data format 
hide
 SRX7398093  PMD  Hepatic Sinusoidal Endothelial Cells / SRX7398093 (PMD)   Data format 
hide
 Configure
 SRX7398093  CpG methylation  Hepatic Sinusoidal Endothelial Cells / SRX7398093 (CpG methylation)   Data format 
hide
 Configure
 SRX7398093  CpG reads  Hepatic Sinusoidal Endothelial Cells / SRX7398093 (CpG reads)   Data format 
hide
 SRX7398094  HMR  Hepatic Sinusoidal Endothelial Cells / SRX7398094 (HMR)   Data format 
hide
 SRX7398094  AMR  Hepatic Sinusoidal Endothelial Cells / SRX7398094 (AMR)   Data format 
hide
 SRX7398094  PMD  Hepatic Sinusoidal Endothelial Cells / SRX7398094 (PMD)   Data format 
hide
 Configure
 SRX7398094  CpG methylation  Hepatic Sinusoidal Endothelial Cells / SRX7398094 (CpG methylation)   Data format 
hide
 Configure
 SRX7398094  CpG reads  Hepatic Sinusoidal Endothelial Cells / SRX7398094 (CpG reads)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Molecular atlas of fetal and adult human liver sinusoidal endothelial cells: a F8 secreting cell [methylation III]
SRA: SRP237955
GEO: GSE142224
Pubmed: 33096636

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX7398089 Hepatic Sinusoidal Endothelial Cells 0.624 4.9 38329 1321.8 34 1185.0 651 30196.9 0.993 GSM4223367: HHSEC Fetal 11359; Homo sapiens; Bisulfite-Seq
SRX7398090 Hepatic Sinusoidal Endothelial Cells 0.614 3.3 34961 1479.4 0 0.0 618 38813.6 0.996 GSM4223368: HHSEC Fetal 11605; Homo sapiens; Bisulfite-Seq
SRX7398091 Hepatic Sinusoidal Endothelial Cells 0.618 2.3 30007 1988.7 4 993.0 255 54683.2 0.994 GSM4223369: HHSEC Adult 200356-1; Homo sapiens; Bisulfite-Seq
SRX7398092 Hepatic Sinusoidal Endothelial Cells 0.576 2.0 25809 2891.7 0 0.0 373 2318806.0 0.994 GSM4223370: HHSEC Adult 200565-1; Homo sapiens; Bisulfite-Seq
SRX7398093 Hepatic Sinusoidal Endothelial Cells 0.715 4.2 36485 1517.8 115 1074.6 493 37749.7 0.976 GSM4223371: HHSEC Adult 200356-2; Homo sapiens; Bisulfite-Seq
SRX7398094 Hepatic Sinusoidal Endothelial Cells 0.705 3.2 33040 1866.8 55 1092.9 782 1265117.6 0.977 GSM4223372: HHSEC Adult 200565-2; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.