Human methylome studies SRP136499 Track Settings
 
A genomic study of the contribution of DNA methylation to regulatory evolution in primates [Heart, Heart (Later Reclassified As Liver), Kidney, Liver, Lung]

Track collection: Human methylome studies

+  All tracks in this collection (438)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       HMR       PMD       CpG methylation ▾      
Select subtracks by views and experiment:
 All views AMR  CpG reads  HMR  PMD  CpG methylation 
experiment
SRX4193006 
SRX4193007 
SRX4193014 
SRX4193015 
SRX4193016 
SRX4193017 
SRX4193018 
SRX4193020 
SRX4193025 
SRX4193026 
SRX4193027 
SRX4193028 
SRX4193030 
SRX4193032 
SRX4193033 
SRX4193034 
SRX4193035 
SRX4193036 
SRX4193037 
SRX4193038 
SRX4193040 
experiment
 All views AMR  CpG reads  HMR  PMD  CpG methylation 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX4193006  HMR  Heart (Later Reclassified As Liver) / SRX4193006 (HMR)   Data format 
hide
 Configure
 SRX4193006  CpG methylation  Heart (Later Reclassified As Liver) / SRX4193006 (CpG methylation)   Data format 
hide
 SRX4193007  HMR  Heart (Later Reclassified As Liver) / SRX4193007 (HMR)   Data format 
hide
 Configure
 SRX4193007  CpG methylation  Heart (Later Reclassified As Liver) / SRX4193007 (CpG methylation)   Data format 
hide
 SRX4193014  HMR  Lung / SRX4193014 (HMR)   Data format 
hide
 Configure
 SRX4193014  CpG methylation  Lung / SRX4193014 (CpG methylation)   Data format 
hide
 SRX4193015  HMR  Heart / SRX4193015 (HMR)   Data format 
hide
 Configure
 SRX4193015  CpG methylation  Heart / SRX4193015 (CpG methylation)   Data format 
hide
 SRX4193016  HMR  Heart / SRX4193016 (HMR)   Data format 
hide
 Configure
 SRX4193016  CpG methylation  Heart / SRX4193016 (CpG methylation)   Data format 
hide
 SRX4193017  HMR  Kidney / SRX4193017 (HMR)   Data format 
hide
 Configure
 SRX4193017  CpG methylation  Kidney / SRX4193017 (CpG methylation)   Data format 
hide
 SRX4193018  HMR  Kidney / SRX4193018 (HMR)   Data format 
hide
 Configure
 SRX4193018  CpG methylation  Kidney / SRX4193018 (CpG methylation)   Data format 
hide
 SRX4193020  HMR  Liver / SRX4193020 (HMR)   Data format 
hide
 Configure
 SRX4193020  CpG methylation  Liver / SRX4193020 (CpG methylation)   Data format 
hide
 SRX4193025  HMR  Heart / SRX4193025 (HMR)   Data format 
hide
 Configure
 SRX4193025  CpG methylation  Heart / SRX4193025 (CpG methylation)   Data format 
hide
 SRX4193026  HMR  Heart / SRX4193026 (HMR)   Data format 
hide
 Configure
 SRX4193026  CpG methylation  Heart / SRX4193026 (CpG methylation)   Data format 
hide
 SRX4193027  HMR  Kidney / SRX4193027 (HMR)   Data format 
hide
 Configure
 SRX4193027  CpG methylation  Kidney / SRX4193027 (CpG methylation)   Data format 
hide
 SRX4193028  HMR  Kidney / SRX4193028 (HMR)   Data format 
hide
 Configure
 SRX4193028  CpG methylation  Kidney / SRX4193028 (CpG methylation)   Data format 
hide
 SRX4193030  HMR  Liver / SRX4193030 (HMR)   Data format 
hide
 Configure
 SRX4193030  CpG methylation  Liver / SRX4193030 (CpG methylation)   Data format 
hide
 SRX4193032  HMR  Lung / SRX4193032 (HMR)   Data format 
hide
 Configure
 SRX4193032  CpG methylation  Lung / SRX4193032 (CpG methylation)   Data format 
hide
 SRX4193033  HMR  Heart / SRX4193033 (HMR)   Data format 
hide
 Configure
 SRX4193033  CpG methylation  Heart / SRX4193033 (CpG methylation)   Data format 
hide
 SRX4193034  HMR  Heart / SRX4193034 (HMR)   Data format 
hide
 Configure
 SRX4193034  CpG methylation  Heart / SRX4193034 (CpG methylation)   Data format 
hide
 SRX4193035  HMR  Kidney / SRX4193035 (HMR)   Data format 
hide
 Configure
 SRX4193035  CpG methylation  Kidney / SRX4193035 (CpG methylation)   Data format 
hide
 SRX4193036  HMR  Kidney / SRX4193036 (HMR)   Data format 
hide
 Configure
 SRX4193036  CpG methylation  Kidney / SRX4193036 (CpG methylation)   Data format 
hide
 SRX4193037  HMR  Liver / SRX4193037 (HMR)   Data format 
hide
 Configure
 SRX4193037  CpG methylation  Liver / SRX4193037 (CpG methylation)   Data format 
hide
 SRX4193038  HMR  Liver / SRX4193038 (HMR)   Data format 
hide
 Configure
 SRX4193038  CpG methylation  Liver / SRX4193038 (CpG methylation)   Data format 
hide
 SRX4193040  HMR  Lung / SRX4193040 (HMR)   Data format 
hide
 Configure
 SRX4193040  CpG methylation  Lung / SRX4193040 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: A genomic study of the contribution of DNA methylation to regulatory evolution in primates
SRA: SRP136499
GEO: GSE112356
Pubmed: 30333510

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX4193006 Heart (Later Reclassified As Liver) 0.749 2.6 29924 1602.3 2 1112.0 783 56997.2 0.991 GSM3184780: H1H3 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193007 Heart (Later Reclassified As Liver) 0.748 2.6 29925 1600.7 3 1313.0 666 60735.1 0.991 GSM3184781: H1H4 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193014 Lung 0.746 1.7 26182 1767.6 3 933.3 477 53712.0 0.996 GSM3184788: H1Lu2_17 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193015 Heart 0.758 1.7 28362 1683.5 0 0.0 395 69796.0 0.991 GSM3184789: H2H1 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193016 Heart 0.758 1.8 28986 1657.5 0 0.0 434 62951.3 0.991 GSM3184790: H2H2 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193017 Kidney 0.779 2.0 30245 1647.0 0 0.0 622 47735.0 0.991 GSM3184791: H2K1 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193018 Kidney 0.777 1.7 29513 1683.7 0 0.0 400 60135.2 0.990 GSM3184792: H2K2 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193020 Liver 0.746 2.4 28570 1666.7 0 0.0 409 49353.7 0.995 GSM3184794: H2Li2 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193025 Heart 0.764 2.2 29057 1600.6 0 0.0 599 54489.0 0.989 GSM3184799: H3H1 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193026 Heart 0.764 2.6 29595 1557.9 0 0.0 847 43601.2 0.989 GSM3184800: H3H2 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193027 Kidney 0.766 2.4 32270 1479.4 0 0.0 661 54244.8 0.987 GSM3184801: H3K1 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193028 Kidney 0.766 2.9 33602 1425.4 0 0.0 766 48152.1 0.988 GSM3184802: H3K2 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193030 Liver 0.720 2.5 27852 1866.9 0 0.0 960 1094966.2 0.991 GSM3184804: H3Li2 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193032 Lung 0.780 1.8 27020 1712.7 0 0.0 461 51197.2 0.992 GSM3184806: H3Lu4 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193033 Heart 0.754 2.1 28433 1650.4 0 0.0 662 65320.1 0.992 GSM3184807: H4H1 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193034 Heart 0.753 1.7 27919 1705.3 0 0.0 456 86826.3 0.992 GSM3184808: H4H2 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193035 Kidney 0.788 2.0 29109 1671.9 0 0.0 656 59914.8 0.991 GSM3184809: H4K3 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193036 Kidney 0.784 2.0 28880 1682.4 0 0.0 743 56971.8 0.991 GSM3184810: H4K4 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193037 Liver 0.732 2.6 27471 1657.4 5 1564.4 445 64098.6 0.990 GSM3184811: H4Li1 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193038 Liver 0.732 1.9 27365 1737.2 2 1617.5 313 81966.8 0.991 GSM3184812: H4Li2 [BS-seq]; Homo sapiens; Bisulfite-Seq
SRX4193040 Lung 0.753 1.8 26018 1746.2 1 2248.0 414 56072.9 0.997 GSM3184814: H4Lu1_15 [BS-seq]; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.