Human methylome studies SRP094554 Track Settings
 
A Molecular signature for Delayed Graft Function [BS-Seq] [Kidney]

Track collection: Human methylome studies

+  All tracks in this collection (438)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG reads ▾       HMR       PMD       CpG methylation ▾      
Select subtracks by views and experiment:
 All views AMR  CpG reads  HMR  PMD  CpG methylation 
experiment
SRX2395714 
SRX2395715 
SRX2395716 
SRX2395717 
SRX2395718 
SRX2395719 
SRX2395720 
SRX2395721 
SRX2395722 
SRX2395723 
SRX2395724 
SRX2395725 
SRX2395726 
SRX2395727 
SRX2395728 
SRX2395729 
SRX2395730 
SRX2395731 
SRX2395732 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX2395714  HMR  Kidney / SRX2395714 (HMR)   Data format 
hide
 Configure
 SRX2395714  CpG methylation  Kidney / SRX2395714 (CpG methylation)   Data format 
hide
 SRX2395715  HMR  Kidney / SRX2395715 (HMR)   Data format 
hide
 Configure
 SRX2395715  CpG methylation  Kidney / SRX2395715 (CpG methylation)   Data format 
hide
 SRX2395716  HMR  Kidney / SRX2395716 (HMR)   Data format 
hide
 Configure
 SRX2395716  CpG methylation  Kidney / SRX2395716 (CpG methylation)   Data format 
hide
 SRX2395717  HMR  Kidney / SRX2395717 (HMR)   Data format 
hide
 Configure
 SRX2395717  CpG methylation  Kidney / SRX2395717 (CpG methylation)   Data format 
hide
 SRX2395718  HMR  Kidney / SRX2395718 (HMR)   Data format 
hide
 Configure
 SRX2395718  CpG methylation  Kidney / SRX2395718 (CpG methylation)   Data format 
hide
 SRX2395719  HMR  Kidney / SRX2395719 (HMR)   Data format 
hide
 Configure
 SRX2395719  CpG methylation  Kidney / SRX2395719 (CpG methylation)   Data format 
hide
 SRX2395720  HMR  Kidney / SRX2395720 (HMR)   Data format 
hide
 Configure
 SRX2395720  CpG methylation  Kidney / SRX2395720 (CpG methylation)   Data format 
hide
 SRX2395721  HMR  Kidney / SRX2395721 (HMR)   Data format 
hide
 Configure
 SRX2395721  CpG methylation  Kidney / SRX2395721 (CpG methylation)   Data format 
hide
 SRX2395722  HMR  Kidney / SRX2395722 (HMR)   Data format 
hide
 Configure
 SRX2395722  CpG methylation  Kidney / SRX2395722 (CpG methylation)   Data format 
hide
 SRX2395723  HMR  Kidney / SRX2395723 (HMR)   Data format 
hide
 Configure
 SRX2395723  CpG methylation  Kidney / SRX2395723 (CpG methylation)   Data format 
hide
 SRX2395724  HMR  Kidney / SRX2395724 (HMR)   Data format 
hide
 Configure
 SRX2395724  CpG methylation  Kidney / SRX2395724 (CpG methylation)   Data format 
hide
 SRX2395725  HMR  Kidney / SRX2395725 (HMR)   Data format 
hide
 Configure
 SRX2395725  CpG methylation  Kidney / SRX2395725 (CpG methylation)   Data format 
hide
 SRX2395726  HMR  Kidney / SRX2395726 (HMR)   Data format 
hide
 Configure
 SRX2395726  CpG methylation  Kidney / SRX2395726 (CpG methylation)   Data format 
hide
 SRX2395727  HMR  Kidney / SRX2395727 (HMR)   Data format 
hide
 Configure
 SRX2395727  CpG methylation  Kidney / SRX2395727 (CpG methylation)   Data format 
hide
 SRX2395728  HMR  Kidney / SRX2395728 (HMR)   Data format 
hide
 Configure
 SRX2395728  CpG methylation  Kidney / SRX2395728 (CpG methylation)   Data format 
hide
 SRX2395729  HMR  Kidney / SRX2395729 (HMR)   Data format 
hide
 Configure
 SRX2395729  CpG methylation  Kidney / SRX2395729 (CpG methylation)   Data format 
hide
 SRX2395730  HMR  Kidney / SRX2395730 (HMR)   Data format 
hide
 Configure
 SRX2395730  CpG methylation  Kidney / SRX2395730 (CpG methylation)   Data format 
hide
 SRX2395731  HMR  Kidney / SRX2395731 (HMR)   Data format 
hide
 Configure
 SRX2395731  CpG methylation  Kidney / SRX2395731 (CpG methylation)   Data format 
hide
 SRX2395732  HMR  Kidney / SRX2395732 (HMR)   Data format 
hide
 Configure
 SRX2395732  CpG methylation  Kidney / SRX2395732 (CpG methylation)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: A Molecular signature for Delayed Graft Function [BS-Seq]
SRA: SRP094554
GEO: GSE90863
Pubmed: 30094915

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX2395714 Kidney 0.794 10.2 40361 1248.5 1042 951.6 1806 18718.1 0.986 GSM2416611: DGF_136b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395715 Kidney 0.800 5.3 35345 1445.7 88 904.1 1107 27930.8 0.982 GSM2416612: DGF_138b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395716 Kidney 0.804 9.5 42237 1280.4 495 963.0 1465 24351.8 0.985 GSM2416613: DGF_140b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395717 Kidney 0.790 8.1 40872 1310.0 630 977.5 1435 25190.1 0.979 GSM2416614: DGF_150b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395718 Kidney 0.804 11.5 43861 1190.8 1579 957.2 1615 19161.6 0.986 GSM2416615: IGF_152b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395719 Kidney 0.799 10.2 44037 1207.2 864 956.9 1688 23527.7 0.983 GSM2416616: IGF_153b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395720 Kidney 0.792 13.0 45131 1182.1 1712 993.8 1473 23074.5 0.983 GSM2416617: IGF_168b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395721 Kidney 0.785 4.1 35912 1397.5 159 1025.1 797 33415.6 0.985 GSM2416618: DGF_169b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395722 Kidney 0.798 12.1 48220 1187.3 1224 980.4 1927 19019.7 0.986 GSM2416619: IGF_180b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395723 Kidney 0.790 12.7 43792 1193.2 1438 977.8 1803 21469.5 0.986 GSM2416620: IGF_74b [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395724 Kidney 0.799 11.2 42920 1201.4 1429 992.6 1661 21439.4 0.985 GSM2416621: DGF_136b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395725 Kidney 0.790 4.0 36067 1462.9 44 999.0 1012 37389.9 0.983 GSM2416622: DGF_138b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395726 Kidney 0.790 11.3 42871 1210.3 1299 994.2 1563 23014.9 0.962 GSM2416623: DGF_140b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395727 Kidney 0.788 9.2 42143 1265.4 787 976.8 1176 26342.4 0.985 GSM2416624: DGF_150b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395728 Kidney 0.802 9.1 40510 1221.3 1198 971.2 1056 24876.7 0.964 GSM2416625: IGF_152b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395729 Kidney 0.802 10.3 45784 1195.8 810 932.5 1532 24076.2 0.983 GSM2416626: IGF_153b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395730 Kidney 0.790 9.6 40321 1234.8 1200 1004.4 1165 25998.0 0.983 GSM2416627: IGF_168b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395731 Kidney 0.790 10.5 42367 1190.3 1196 990.0 1759 15664.1 0.984 GSM2416628: DGF_169b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq
SRX2395732 Kidney 0.794 9.3 39819 1249.0 746 996.9 1636 20013.0 0.984 GSM2416629: IGF_74b1 [BS-Seq]; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.