Mouse methylome studies SRP056705 Track Settings
 
An epigenetic memory of pregnancy in the mouse mammary gland [Basal Differentiated, Basal Mammary Stem Cells, Basal Progenitor, Luminal Alveolar, Luminal Ductal, Luminal Progenitor, Luminal Total]

Track collection: Mouse methylome studies

+  All tracks in this collection (575)

Maximum display mode:       Reset to defaults   
Select views (Help):
HMR       CpG methylation ▾       PMD       CpG reads ▾       AMR      
Select subtracks by views and experiment:
 All views HMR  CpG methylation  PMD  CpG reads  AMR 
experiment
SRX973446 
SRX973447 
SRX973448 
SRX973449 
SRX973450 
SRX973451 
SRX973452 
SRX973453 
SRX973454 
SRX973455 
SRX973456 
SRX973457 
SRX973458 
SRX973459 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX973446  HMR  Basal Differentiated / SRX973446 (HMR)   Data format 
hide
 Configure
 SRX973446  CpG methylation  Basal Differentiated / SRX973446 (CpG methylation)   Data format 
hide
 SRX973447  HMR  Basal Mammary Stem Cells / SRX973447 (HMR)   Data format 
hide
 Configure
 SRX973447  CpG methylation  Basal Mammary Stem Cells / SRX973447 (CpG methylation)   Data format 
hide
 SRX973448  HMR  Basal Progenitor / SRX973448 (HMR)   Data format 
hide
 Configure
 SRX973448  CpG methylation  Basal Progenitor / SRX973448 (CpG methylation)   Data format 
hide
 SRX973449  HMR  Luminal Alveolar / SRX973449 (HMR)   Data format 
hide
 Configure
 SRX973449  CpG methylation  Luminal Alveolar / SRX973449 (CpG methylation)   Data format 
hide
 SRX973450  HMR  Luminal Ductal / SRX973450 (HMR)   Data format 
hide
 Configure
 SRX973450  CpG methylation  Luminal Ductal / SRX973450 (CpG methylation)   Data format 
hide
 SRX973451  HMR  Luminal Progenitor / SRX973451 (HMR)   Data format 
hide
 Configure
 SRX973451  CpG methylation  Luminal Progenitor / SRX973451 (CpG methylation)   Data format 
hide
 SRX973452  HMR  Basal Differentiated / SRX973452 (HMR)   Data format 
hide
 Configure
 SRX973452  CpG methylation  Basal Differentiated / SRX973452 (CpG methylation)   Data format 
hide
 SRX973453  HMR  Basal Mammary Stem Cells / SRX973453 (HMR)   Data format 
hide
 Configure
 SRX973453  CpG methylation  Basal Mammary Stem Cells / SRX973453 (CpG methylation)   Data format 
hide
 SRX973454  HMR  Basal Progenitor / SRX973454 (HMR)   Data format 
hide
 Configure
 SRX973454  CpG methylation  Basal Progenitor / SRX973454 (CpG methylation)   Data format 
hide
 SRX973455  HMR  Luminal Alveolar / SRX973455 (HMR)   Data format 
hide
 Configure
 SRX973455  CpG methylation  Luminal Alveolar / SRX973455 (CpG methylation)   Data format 
hide
 SRX973456  HMR  Luminal Ductal / SRX973456 (HMR)   Data format 
hide
 Configure
 SRX973456  CpG methylation  Luminal Ductal / SRX973456 (CpG methylation)   Data format 
hide
 SRX973457  HMR  Luminal Progenitor / SRX973457 (HMR)   Data format 
hide
 Configure
 SRX973457  CpG methylation  Luminal Progenitor / SRX973457 (CpG methylation)   Data format 
hide
 SRX973458  HMR  Luminal Total / SRX973458 (HMR)   Data format 
hide
 Configure
 SRX973458  CpG methylation  Luminal Total / SRX973458 (CpG methylation)   Data format 
hide
 SRX973459  HMR  Luminal Total / SRX973459 (HMR)   Data format 
hide
 Configure
 SRX973459  CpG methylation  Luminal Total / SRX973459 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: An epigenetic memory of pregnancy in the mouse mammary gland
SRA: SRP056705
GEO: GSE67386
Pubmed: 25959817

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX973446 Basal Differentiated 0.662 17.2 74844 1043.2 461 969.1 1743 11745.9 0.990 GSM1646785: nulliparous basal differentiated; Mus musculus; Bisulfite-Seq
SRX973447 Basal Mammary Stem Cells 0.620 11.0 38805 1361.6 285 998.1 1843 9555.3 0.988 GSM1646786: nulliparous basal MaSC; Mus musculus; Bisulfite-Seq
SRX973448 Basal Progenitor 0.660 18.2 43943 1152.4 627 959.8 2089 10383.2 0.988 GSM1646787: nulliparous basal progenitor; Mus musculus; Bisulfite-Seq
SRX973449 Luminal Alveolar 0.723 10.9 57630 1248.2 366 964.1 1643 19875.6 0.987 GSM1646788: nulliparous luminal alveolar; Mus musculus; Bisulfite-Seq
SRX973450 Luminal Ductal 0.720 13.8 57093 1213.2 426 978.9 2513 12441.8 0.990 GSM1646789: nulliparous luminal ductal; Mus musculus; Bisulfite-Seq
SRX973451 Luminal Progenitor 0.704 19.7 71513 1113.0 648 978.5 2624 11774.9 0.986 GSM1646790: nulliparous luminal progenitor; Mus musculus; Bisulfite-Seq
SRX973452 Basal Differentiated 0.694 7.8 60831 1288.0 208 985.7 1291 20110.9 0.990 GSM1646791: parous basal differentiated; Mus musculus; Bisulfite-Seq
SRX973453 Basal Mammary Stem Cells 0.710 5.3 39406 1665.9 145 1078.6 831 21058.3 0.985 GSM1646792: parous basal MaSC; Mus musculus; Bisulfite-Seq
SRX973454 Basal Progenitor 0.640 20.3 77921 1032.3 725 960.1 1876 11058.6 0.988 GSM1646793: parous basal progenitor; Mus musculus; Bisulfite-Seq
SRX973455 Luminal Alveolar 0.695 11.7 69343 1226.3 941 1041.4 1825 19311.9 0.988 GSM1646794: parous luminal alveolar; Mus musculus; Bisulfite-Seq
SRX973456 Luminal Ductal 0.691 11.8 68838 1212.4 990 1046.2 1679 19698.1 0.988 GSM1646795: parous luminal ductal; Mus musculus; Bisulfite-Seq
SRX973457 Luminal Progenitor 0.698 12.8 71137 1225.5 579 999.2 2653 14001.8 0.991 GSM1646796: parous luminal progenitor; Mus musculus; Bisulfite-Seq
SRX973458 Luminal Total 0.552 4.9 29477 2353.7 144 956.4 606 31553.5 0.984 GSM1646797: nulliparous estrogen progesterone; Mus musculus; Bisulfite-Seq
SRX973459 Luminal Total 0.602 7.7 43561 1560.4 213 908.5 1131 15949.0 0.991 GSM1646798: parous 12Mo post pregnancy; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.