Human methylome studies SRP035642 Track Settings
 
The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts [Whole genome bisulfite sequencing] [GM02316, GM02317, GM02456, GM02555]

Track collection: Human methylome studies

+  All tracks in this collection (424)

Maximum display mode:       Reset to defaults   
Select views (Help):
CpG reads ▾       PMD       AMR       CpG methylation ▾      
Select subtracks by views and experiment:
 All views CpG reads  PMD  AMR  CpG methylation 
experiment
SRX448680 
SRX448681 
SRX448682 
SRX448683 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX448680  AMR  GM02316 / SRX448680 (AMR)   Data format 
hide
 SRX448680  PMD  GM02316 / SRX448680 (PMD)   Data format 
hide
 Configure
 SRX448680  CpG methylation  GM02316 / SRX448680 (CpG methylation)   Data format 
hide
 Configure
 SRX448680  CpG reads  GM02316 / SRX448680 (CpG reads)   Data format 
hide
 SRX448681  AMR  GM02317 / SRX448681 (AMR)   Data format 
hide
 SRX448681  PMD  GM02317 / SRX448681 (PMD)   Data format 
hide
 Configure
 SRX448681  CpG methylation  GM02317 / SRX448681 (CpG methylation)   Data format 
hide
 Configure
 SRX448681  CpG reads  GM02317 / SRX448681 (CpG reads)   Data format 
hide
 SRX448682  AMR  GM02456 / SRX448682 (AMR)   Data format 
hide
 SRX448682  PMD  GM02456 / SRX448682 (PMD)   Data format 
hide
 Configure
 SRX448682  CpG methylation  GM02456 / SRX448682 (CpG methylation)   Data format 
hide
 Configure
 SRX448682  CpG reads  GM02456 / SRX448682 (CpG reads)   Data format 
hide
 SRX448683  AMR  GM02555 / SRX448683 (AMR)   Data format 
hide
 SRX448683  PMD  GM02555 / SRX448683 (PMD)   Data format 
hide
 Configure
 SRX448683  CpG methylation  GM02555 / SRX448683 (CpG methylation)   Data format 
hide
 Configure
 SRX448683  CpG reads  GM02555 / SRX448683 (CpG reads)   Data format 
    
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts [Whole genome bisulfite sequencing]
SRA: SRP035642
GEO: GSE54373
Pubmed: 24555846

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX448680 GM02316 0.468 4.6 40786 19465.4 104 1026.0 2667 473518.2 0.992 GSM1314047: GM02316; Homo sapiens; Bisulfite-Seq
SRX448681 GM02317 0.515 6.2 50149 16911.1 184 1112.5 2452 503897.5 0.993 GSM1314048: GM02317; Homo sapiens; Bisulfite-Seq
SRX448682 GM02456 0.599 6.6 54122 12184.6 134 1072.9 2120 559072.4 0.987 GSM1314049: GM02456; Homo sapiens; Bisulfite-Seq
SRX448683 GM02555 0.564 3.2 33586 13400.4 61 1071.0 1573 774609.7 0.985 GSM1314050: GM02555; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.