Mouse methylome studies SRP525939 Track Settings
 
Non-CG DNA methylation and MeCP2 stabilize repeated tuning of long genes that distinguish closely related neuron types [WGBS] [SRS22322348, SRS22322349, SRS22322350, SRS22322352, SRS22322353, SRS22322354, SRS22322355, SRS22322356, SRS22322357, SRS22322358, SRS22322359, SRS22322360, SRS22322361, SRS22322362, SRS22322363]

Track collection: Mouse methylome studies

+  All tracks in this collection (578)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       CpG methylation ▾       HMR       CpG reads ▾       PMD      
Select subtracks by views and experiment:
 All views AMR  CpG methylation  HMR  CpG reads  PMD 
experiment
SRX25680737 
SRX25680738 
SRX25680739 
SRX25680741 
SRX25680742 
SRX25680743 
SRX25680744 
SRX25680745 
SRX25680746 
SRX25680747 
SRX25680748 
SRX25680749 
SRX25680750 
SRX25680751 
SRX25680752 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX25680737  HMR  SRS22322348 / SRX25680737 (HMR)   Data format 
hide
 Configure
 SRX25680737  CpG methylation  SRS22322348 / SRX25680737 (CpG methylation)   Data format 
hide
 SRX25680738  HMR  SRS22322349 / SRX25680738 (HMR)   Data format 
hide
 Configure
 SRX25680738  CpG methylation  SRS22322349 / SRX25680738 (CpG methylation)   Data format 
hide
 SRX25680739  HMR  SRS22322350 / SRX25680739 (HMR)   Data format 
hide
 Configure
 SRX25680739  CpG methylation  SRS22322350 / SRX25680739 (CpG methylation)   Data format 
hide
 SRX25680741  HMR  SRS22322352 / SRX25680741 (HMR)   Data format 
hide
 Configure
 SRX25680741  CpG methylation  SRS22322352 / SRX25680741 (CpG methylation)   Data format 
hide
 SRX25680742  HMR  SRS22322353 / SRX25680742 (HMR)   Data format 
hide
 Configure
 SRX25680742  CpG methylation  SRS22322353 / SRX25680742 (CpG methylation)   Data format 
hide
 SRX25680743  HMR  SRS22322354 / SRX25680743 (HMR)   Data format 
hide
 Configure
 SRX25680743  CpG methylation  SRS22322354 / SRX25680743 (CpG methylation)   Data format 
hide
 SRX25680744  HMR  SRS22322355 / SRX25680744 (HMR)   Data format 
hide
 Configure
 SRX25680744  CpG methylation  SRS22322355 / SRX25680744 (CpG methylation)   Data format 
hide
 SRX25680745  HMR  SRS22322356 / SRX25680745 (HMR)   Data format 
hide
 Configure
 SRX25680745  CpG methylation  SRS22322356 / SRX25680745 (CpG methylation)   Data format 
hide
 SRX25680746  HMR  SRS22322357 / SRX25680746 (HMR)   Data format 
hide
 Configure
 SRX25680746  CpG methylation  SRS22322357 / SRX25680746 (CpG methylation)   Data format 
hide
 SRX25680747  HMR  SRS22322358 / SRX25680747 (HMR)   Data format 
hide
 Configure
 SRX25680747  CpG methylation  SRS22322358 / SRX25680747 (CpG methylation)   Data format 
hide
 SRX25680748  HMR  SRS22322359 / SRX25680748 (HMR)   Data format 
hide
 Configure
 SRX25680748  CpG methylation  SRS22322359 / SRX25680748 (CpG methylation)   Data format 
hide
 SRX25680749  HMR  SRS22322360 / SRX25680749 (HMR)   Data format 
hide
 Configure
 SRX25680749  CpG methylation  SRS22322360 / SRX25680749 (CpG methylation)   Data format 
hide
 SRX25680750  HMR  SRS22322361 / SRX25680750 (HMR)   Data format 
hide
 Configure
 SRX25680750  CpG methylation  SRS22322361 / SRX25680750 (CpG methylation)   Data format 
hide
 SRX25680751  HMR  SRS22322362 / SRX25680751 (HMR)   Data format 
hide
 Configure
 SRX25680751  CpG methylation  SRS22322362 / SRX25680751 (CpG methylation)   Data format 
hide
 SRX25680752  HMR  SRS22322363 / SRX25680752 (HMR)   Data format 
hide
 Configure
 SRX25680752  CpG methylation  SRS22322363 / SRX25680752 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Non-CG DNA methylation and MeCP2 stabilize repeated tuning of long genes that distinguish closely related neuron types [WGBS]
SRA: SRP525939
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX25680737 SRS22322348 0.814 6.8 54855 1347.7 192 1021.2 2317 39641.4 0.956 GSM8453466: PV_KO_LIB041643_22C7J2LT4; Mus musculus; Bisulfite-Seq
SRX25680738 SRS22322349 0.794 4.8 53488 1538.8 139 1076.5 1692 53864.8 0.961 GSM8453480: L5_WT_LIB041645_22C7J2LT4; Mus musculus; Bisulfite-Seq
SRX25680739 SRS22322350 0.799 6.7 59979 1429.8 325 992.6 1972 44727.4 0.958 GSM8453481: L5_WT_LIB041648_22C7J2LT4; Mus musculus; Bisulfite-Seq
SRX25680741 SRS22322352 0.819 4.4 48251 1446.5 97 1185.1 1585 63146.9 0.954 GSM8453468: PV_WT_LIB041644_22C7J2LT4; Mus musculus; Bisulfite-Seq
SRX25680742 SRS22322353 0.819 4.3 37558 1388.4 122 1054.9 677 36383.8 0.962 GSM8453469: SST_KO_LIB042978_227WGJLT4; Mus musculus; Bisulfite-Seq
SRX25680743 SRS22322354 0.827 3.6 35956 1476.4 42 941.8 772 44977.9 0.956 GSM8453470: SST_KO_LIB045575_22CGWFLT4; Mus musculus; Bisulfite-Seq
SRX25680744 SRS22322355 0.817 3.9 37001 1420.3 88 1047.2 894 39135.6 0.961 GSM8453471: SST_WT_LIB042979_227WGJLT4; Mus musculus; Bisulfite-Seq
SRX25680745 SRS22322356 0.825 3.0 33504 1489.7 69 1155.2 613 46499.4 0.960 GSM8453472: SST_WT_LIB042980_227WGJLT4; Mus musculus; Bisulfite-Seq
SRX25680746 SRS22322357 0.822 4.0 38750 1415.9 81 1043.2 907 38564.3 0.956 GSM8453473: SST_WT_LIB045574_22CGWFLT4; Mus musculus; Bisulfite-Seq
SRX25680747 SRS22322358 0.774 2.4 43726 1847.5 32 1195.9 727 111750.3 0.971 GSM8453474: L4_KO_LIB041633_227WGJLT4; Mus musculus; Bisulfite-Seq
SRX25680748 SRS22322359 0.776 2.7 46874 1797.5 48 1244.5 847 102398.5 0.971 GSM8453475: L4_KO_LIB042982_227WGJLT4; Mus musculus; Bisulfite-Seq
SRX25680749 SRS22322360 0.773 2.1 40632 1942.2 33 1216.4 706 133489.5 0.968 GSM8453476: L4_WT_LIB041634_227WGJLT4; Mus musculus; Bisulfite-Seq
SRX25680750 SRS22322361 0.776 5.0 62613 1523.9 135 4260.2 1674 50286.0 0.971 GSM8453477: L4_WT_LIB042981_227WGJLT4; Mus musculus; Bisulfite-Seq
SRX25680751 SRS22322362 0.813 3.8 47356 1595.9 66 1163.3 1506 68682.0 0.959 GSM8453478: L5_KO_LIB041646_22C7J2LT4; Mus musculus; Bisulfite-Seq
SRX25680752 SRS22322363 0.795 7.0 61628 1398.8 331 910.7 2176 41531.1 0.962 GSM8453479: L5_KO_LIB041647_22C7J2LT4; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.