Subtracks⇓  Description⇓  Mouse methylome studies SRP078942 Track Settings
 
Cis-regulatory landscape of four cell types of the retina [Cones, Horizontal Cells, Rods, Starbust Amacrine Cells]

Track collection: Mouse methylome studies

+  All tracks in this collection (578)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       HMR       CpG methylation ▾       AMR       CpG reads ▾      
Select subtracks by views and experiment:
 All views PMD  HMR  CpG methylation  AMR  CpG reads 
experiment
SRX1960923 
SRX1960925 
SRX1960927 
SRX1960929 
SRX1960933 
SRX1960934 
SRX1960935 
SRX1960936 
SRX1960937 
SRX1960938 
SRX1960939 
SRX1960940 
SRX1960941 
SRX1960942 
List subtracks: only selected/visible    all    (28 of 70 selected)  Top⇑
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX1960923  HMR  Cones / SRX1960923 (HMR)   Data format 
hide
 Configure
 SRX1960923  CpG methylation  Cones / SRX1960923 (CpG methylation)   Data format 
hide
 SRX1960925  HMR  Cones / SRX1960925 (HMR)   Data format 
hide
 Configure
 SRX1960925  CpG methylation  Cones / SRX1960925 (CpG methylation)   Data format 
hide
 SRX1960927  HMR  Rods / SRX1960927 (HMR)   Data format 
hide
 Configure
 SRX1960927  CpG methylation  Rods / SRX1960927 (CpG methylation)   Data format 
hide
 SRX1960929  HMR  Rods / SRX1960929 (HMR)   Data format 
hide
 Configure
 SRX1960929  CpG methylation  Rods / SRX1960929 (CpG methylation)   Data format 
hide
 SRX1960933  HMR  Horizontal Cells / SRX1960933 (HMR)   Data format 
hide
 Configure
 SRX1960933  CpG methylation  Horizontal Cells / SRX1960933 (CpG methylation)   Data format 
hide
 SRX1960934  HMR  Horizontal Cells / SRX1960934 (HMR)   Data format 
hide
 Configure
 SRX1960934  CpG methylation  Horizontal Cells / SRX1960934 (CpG methylation)   Data format 
hide
 SRX1960935  HMR  Horizontal Cells / SRX1960935 (HMR)   Data format 
hide
 Configure
 SRX1960935  CpG methylation  Horizontal Cells / SRX1960935 (CpG methylation)   Data format 
hide
 SRX1960936  HMR  Horizontal Cells / SRX1960936 (HMR)   Data format 
hide
 Configure
 SRX1960936  CpG methylation  Horizontal Cells / SRX1960936 (CpG methylation)   Data format 
hide
 SRX1960937  HMR  Horizontal Cells / SRX1960937 (HMR)   Data format 
hide
 Configure
 SRX1960937  CpG methylation  Horizontal Cells / SRX1960937 (CpG methylation)   Data format 
hide
 SRX1960938  HMR  Horizontal Cells / SRX1960938 (HMR)   Data format 
hide
 Configure
 SRX1960938  CpG methylation  Horizontal Cells / SRX1960938 (CpG methylation)   Data format 
hide
 SRX1960939  HMR  Starbust Amacrine Cells / SRX1960939 (HMR)   Data format 
hide
 Configure
 SRX1960939  CpG methylation  Starbust Amacrine Cells / SRX1960939 (CpG methylation)   Data format 
hide
 SRX1960940  HMR  Starbust Amacrine Cells / SRX1960940 (HMR)   Data format 
hide
 Configure
 SRX1960940  CpG methylation  Starbust Amacrine Cells / SRX1960940 (CpG methylation)   Data format 
hide
 SRX1960941  HMR  Starbust Amacrine Cells / SRX1960941 (HMR)   Data format 
hide
 Configure
 SRX1960941  CpG methylation  Starbust Amacrine Cells / SRX1960941 (CpG methylation)   Data format 
hide
 SRX1960942  HMR  Starbust Amacrine Cells / SRX1960942 (HMR)   Data format 
hide
 Configure
 SRX1960942  CpG methylation  Starbust Amacrine Cells / SRX1960942 (CpG methylation)   Data format 
    28 of 70 selected
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Cis-regulatory landscape of four cell types of the retina
SRA: SRP078942
GEO: GSE84589
Pubmed: 29059322

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX1960923 Cones 0.822 4.9 35481 1445.0 33 1263.4 904 27264.0 0.964 GSM2242288: WGBS_cones_1; Mus musculus; Bisulfite-Seq
SRX1960925 Cones 0.821 4.9 36704 1412.9 34 1359.2 1055 25732.0 0.964 GSM2242290: WGBS_cones_2; Mus musculus; Bisulfite-Seq
SRX1960927 Rods 0.783 5.2 40553 1356.0 47 1438.9 950 24433.0 0.973 GSM2242292: WGBS_rods_1; Mus musculus; Bisulfite-Seq
SRX1960929 Rods 0.783 5.2 40061 1365.4 44 1392.4 778 25834.6 0.973 GSM2242294: WGBS_rods_2; Mus musculus; Bisulfite-Seq
SRX1960933 Horizontal Cells 0.746 1.9 30712 1520.9 124 1144.1 209 86747.2 0.968 GSM2242298: WGBS_HC_3; Mus musculus; Bisulfite-Seq
SRX1960934 Horizontal Cells 0.746 1.8 30583 1531.5 130 1085.9 247 84393.8 0.968 GSM2242299: WGBS_HC_4; Mus musculus; Bisulfite-Seq
SRX1960935 Horizontal Cells 0.771 2.2 31418 1467.8 54 1154.4 220 73849.4 0.983 GSM2242300: WGBS_HC_5; Mus musculus; Bisulfite-Seq
SRX1960936 Horizontal Cells 0.770 2.2 31500 1469.1 46 1156.0 304 67854.4 0.983 GSM2242301: WGBS_HC_6; Mus musculus; Bisulfite-Seq
SRX1960937 Horizontal Cells 0.760 1.8 30469 1529.6 47 1185.4 158 90575.8 0.983 GSM2242302: WGBS_HC_7; Mus musculus; Bisulfite-Seq
SRX1960938 Horizontal Cells 0.761 1.8 30315 1532.4 43 1230.0 159 88489.5 0.983 GSM2242303: WGBS_HC_8; Mus musculus; Bisulfite-Seq
SRX1960939 Starbust Amacrine Cells 0.799 3.0 35462 1425.8 53 1325.5 706 67231.2 0.969 GSM2242304: WGBS_SBAC_1; Mus musculus; Bisulfite-Seq
SRX1960940 Starbust Amacrine Cells 0.799 3.0 34336 1455.8 52 1284.3 621 69900.5 0.969 GSM2242305: WGBS_SBAC_2; Mus musculus; Bisulfite-Seq
SRX1960941 Starbust Amacrine Cells 0.803 2.5 33807 1466.2 47 1395.9 638 83346.5 0.968 GSM2242306: WGBS_SBAC_3; Mus musculus; Bisulfite-Seq
SRX1960942 Starbust Amacrine Cells 0.803 2.5 33612 1475.3 46 1223.0 660 82211.5 0.968 GSM2242307: WGBS_SBAC_4; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.

  Top⇑ 
  Top⇑