Subtracks⇓  Description⇓  Human methylome studies SRP496763 Track Settings
 
Charting the regulatory landscape of TP53 on transposable elements in cancer [WGBS] [SRS20802026, SRS20802027, SRS20802028, SRS20802029, SRS20802030, SRS20802031, SRS20802032, SRS20802033, SRS20802034, SRS20802035, SRS20802036, SRS20802037, SRS20802038, SRS20802039, SRS20802040, SRS20802041, SRS20802042, SRS20802043, SRS20802044, SRS20802045, SRS20802046, SRS20802047, SRS20802048, SRS20802049]

Track collection: Human methylome studies

+  All tracks in this collection (443)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       AMR       CpG methylation ▾       CpG reads ▾      
Select subtracks by views and experiment:
 All views PMD  AMR  CpG methylation  CpG reads 
experiment
SRX24005747 
SRX24005748 
SRX24005749 
SRX24005750 
SRX24005751 
SRX24005752 
SRX24005753 
SRX24005754 
SRX24005755 
SRX24005756 
SRX24005757 
SRX24005758 
SRX24005759 
SRX24005760 
SRX24005761 
SRX24005762 
SRX24005763 
SRX24005764 
SRX24005765 
SRX24005766 
SRX24005767 
SRX24005768 
SRX24005769 
SRX24005770 
experiment
 All views PMD  AMR  CpG methylation  CpG reads 
List subtracks: only selected/visible    all    (24 of 96 selected)  Top⇑
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX24005747  CpG methylation  SRS20802028 / SRX24005747 (CpG methylation)   Data format 
hide
 Configure
 SRX24005748  CpG methylation  SRS20802027 / SRX24005748 (CpG methylation)   Data format 
hide
 Configure
 SRX24005749  CpG methylation  SRS20802026 / SRX24005749 (CpG methylation)   Data format 
hide
 Configure
 SRX24005750  CpG methylation  SRS20802029 / SRX24005750 (CpG methylation)   Data format 
hide
 Configure
 SRX24005751  CpG methylation  SRS20802030 / SRX24005751 (CpG methylation)   Data format 
hide
 Configure
 SRX24005752  CpG methylation  SRS20802031 / SRX24005752 (CpG methylation)   Data format 
hide
 Configure
 SRX24005753  CpG methylation  SRS20802032 / SRX24005753 (CpG methylation)   Data format 
hide
 Configure
 SRX24005754  CpG methylation  SRS20802035 / SRX24005754 (CpG methylation)   Data format 
hide
 Configure
 SRX24005755  CpG methylation  SRS20802033 / SRX24005755 (CpG methylation)   Data format 
hide
 Configure
 SRX24005756  CpG methylation  SRS20802034 / SRX24005756 (CpG methylation)   Data format 
hide
 Configure
 SRX24005757  CpG methylation  SRS20802036 / SRX24005757 (CpG methylation)   Data format 
hide
 Configure
 SRX24005758  CpG methylation  SRS20802037 / SRX24005758 (CpG methylation)   Data format 
hide
 Configure
 SRX24005759  CpG methylation  SRS20802038 / SRX24005759 (CpG methylation)   Data format 
hide
 Configure
 SRX24005760  CpG methylation  SRS20802040 / SRX24005760 (CpG methylation)   Data format 
hide
 Configure
 SRX24005761  CpG methylation  SRS20802039 / SRX24005761 (CpG methylation)   Data format 
hide
 Configure
 SRX24005762  CpG methylation  SRS20802041 / SRX24005762 (CpG methylation)   Data format 
hide
 Configure
 SRX24005763  CpG methylation  SRS20802042 / SRX24005763 (CpG methylation)   Data format 
hide
 Configure
 SRX24005764  CpG methylation  SRS20802043 / SRX24005764 (CpG methylation)   Data format 
hide
 Configure
 SRX24005765  CpG methylation  SRS20802044 / SRX24005765 (CpG methylation)   Data format 
hide
 Configure
 SRX24005766  CpG methylation  SRS20802045 / SRX24005766 (CpG methylation)   Data format 
hide
 Configure
 SRX24005767  CpG methylation  SRS20802047 / SRX24005767 (CpG methylation)   Data format 
hide
 Configure
 SRX24005768  CpG methylation  SRS20802046 / SRX24005768 (CpG methylation)   Data format 
hide
 Configure
 SRX24005769  CpG methylation  SRS20802048 / SRX24005769 (CpG methylation)   Data format 
hide
 Configure
 SRX24005770  CpG methylation  SRS20802049 / SRX24005770 (CpG methylation)   Data format 
    24 of 96 selected
Assembly: Human Dec. 2013 (GRCh38/hg38)

Study title: Charting the regulatory landscape of TP53 on transposable elements in cancer [WGBS]
SRA: SRP496763
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX24005747 SRS20802028 0.547 6.8 51871 16962.8 194 937.6 2060 617441.0 0.999 GSM8156729: A549_KO_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005748 SRS20802027 0.539 5.3 43680 18683.0 111 1003.6 1897 667933.8 0.998 GSM8156730: A549_KO_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005749 SRS20802026 0.563 4.3 40697 19271.7 53 1055.8 1748 722128.0 0.999 GSM8156731: A549_KO_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005750 SRS20802029 0.557 6.9 51501 17074.3 176 1005.9 2077 613658.3 0.999 GSM8156732: A549_KO_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005751 SRS20802030 0.551 4.8 46089 17944.3 76 939.0 1971 614084.2 0.999 GSM8156733: A549_WT_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005752 SRS20802031 0.547 8.2 60998 14774.8 275 985.7 2485 491584.8 0.999 GSM8156734: A549_WT_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005753 SRS20802032 0.549 5.4 51024 16886.1 87 1039.0 2193 555737.9 0.999 GSM8156735: A549_WT_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005754 SRS20802035 0.548 6.4 53946 16175.4 145 958.0 2183 558217.2 0.999 GSM8156736: A549_WT_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005755 SRS20802033 0.705 9.8 71718 10216.4 726 977.5 1495 664531.9 0.999 GSM8156737: HCT116_KO_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005756 SRS20802034 0.702 7.9 67434 10720.5 487 930.0 1474 664671.2 0.998 GSM8156738: HCT116_KO_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005757 SRS20802036 0.700 5.7 61326 11700.7 195 948.3 1353 734212.0 0.999 GSM8156739: HCT116_KO_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005758 SRS20802037 0.704 7.2 65541 10926.3 380 984.3 1469 665601.4 0.999 GSM8156740: HCT116_KO_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005759 SRS20802038 0.727 8.5 72253 9132.9 580 945.2 1488 667482.1 0.999 GSM8156741: HCT116_WT_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005760 SRS20802040 0.723 7.9 70774 9276.8 540 964.6 1437 691353.1 0.999 GSM8156742: HCT116_WT_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005761 SRS20802039 0.722 7.2 68838 9513.9 426 947.8 1423 694140.2 0.999 GSM8156743: HCT116_WT_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005762 SRS20802041 0.715 7.2 69877 9369.3 402 991.3 1396 709148.5 0.999 GSM8156744: HCT116_WT_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005763 SRS20802042 0.628 10.4 50537 9227.5 1168 1062.5 902 1526352.1 0.999 GSM8156745: RKO_KO_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005764 SRS20802043 0.624 7.7 43992 12043.6 624 1054.3 934 1498061.9 0.999 GSM8156746: RKO_KO_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005765 SRS20802044 0.627 6.9 42166 11719.0 593 1055.8 890 1522061.4 0.999 GSM8156747: RKO_KO_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005766 SRS20802045 0.632 8.0 44356 10982.4 709 1044.9 905 1506918.7 0.999 GSM8156748: RKO_KO_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005767 SRS20802047 0.659 7.6 47181 9944.4 596 1079.9 973 1363524.0 0.999 GSM8156749: RKO_WT_DMSO_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005768 SRS20802046 0.659 7.6 47335 10109.4 611 1080.0 955 1382043.5 0.999 GSM8156750: RKO_WT_DMSO_WGBS_BRep2; Homo sapiens; Bisulfite-Seq
SRX24005769 SRS20802048 0.654 6.9 47439 9907.7 416 1082.8 914 1426930.5 0.999 GSM8156751: RKO_WT_DOX_WGBS_BRep1; Homo sapiens; Bisulfite-Seq
SRX24005770 SRS20802049 0.659 7.6 48207 9523.7 563 1077.0 969 1371629.3 0.999 GSM8156752: RKO_WT_DOX_WGBS_BRep2; Homo sapiens; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.

  Top⇑ 
  Top⇑