We have a suspicion that you are an automated web bot software, not a real user. To keep our site fast for other users, we have slowed down this page. The slowdown will gradually disappear. If you think this is a mistake, please contact us at genome-www@soe.ucsc.edu. Also note that all data for hgGeneGraph can be obtained through our public MySQL server and all our software source code is available and can be installed locally onto your own computer. If you are unsure how to use these resources, do not hesitate to contact us.
UCSC Genome Browser Gene Interaction Graph
Gene interactions and pathways from curated databases and text-mining
J Biol Chem 1996, PMID: 8550611

Platelet-derived growth factor stimulates protein kinase A through a mitogen-activated protein kinase-dependent pathway in human arterial smooth muscle cells.

Graves, L M; Bornfeldt, K E; Sidhu, J S; Argast, G M; Raines, E W; Ross, R; Leslie, C C; Krebs, E G

The abilities of platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF-I) to regulate cAMP metabolism and mitogen-activated protein kinase (MAP kinase) activity were compared in human arterial smooth muscle cells (hSMC). PDGF-BB stimulated cAMP accumulation up to 150-fold in a concentration-dependent manner (EC50 approximately 0.7 nM). The peak of cAMP formation and cAMP-dependent protein kinase (PKA) activity occurred approximately 5 min after the addition of PDGF and rapidly declined thereafter. Incubating cells with PDGF and 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor) enhanced the accumulation of cAMP and PKA activity by an additional 2.5-3-fold, whereas IBMX alone was essentially without effect. The PDGF-stimulated increase in cAMP was prevented by addition of the cyclooxygenase inhibitor indomethacin, consistent with release of prostaglandins stimulating cAMP. PDGF, but not IGF-I, stimulated MAPK activity, cytosolic phospholipase A2 (cPLA2) phosphorylation, and cAMP synthesis which indicated a key role for MAP kinase in the activation of cPLA2. Further, PDGF stimulated the rapid release of arachidonic acid and synthesis of prostaglandin E2 (PGE2) which could be inhibited by a cPLA2 inhibitor (AACOCF3). Calcium mobilization was required for PDGF-induced arachidonic acid release and PGE2 synthesis but not for MAPK activation, whereas PKC was required for PGE2-mediated activation of PKA. In summary, these results demonstrated that PDGF increases cAMP formation and PKA activity through a MAP kinase-mediated activation of cPLA2, arachidonic acid release, and PGE2 synthesis in human arterial smooth muscle cells.

Document information provided by NCBI PubMed

Text Mining Data

MAPK → IGF-I: " PDGF, but not IGF-I , stimulated MAPK activity, cytosolic phospholipase A2 (cPLA2) phosphorylation, and cAMP synthesis which indicated a key role for MAP kinase in the activation of cPLA2 "

cytosolic phospholipase A2 (cPLA2) → IGF-I: " PDGF, but not IGF-I , stimulated MAPK activity, cytosolic phospholipase A2 (cPLA2) phosphorylation, and cAMP synthesis which indicated a key role for MAP kinase in the activation of cPLA2 "

cPLA2 → PKA: " In summary, these results demonstrated that PDGF increases cAMP formation and PKA activity through a MAP kinase mediated activation of cPLA2 , arachidonic acid release, and PGE2 synthesis in human arterial smooth muscle cells "

Manually curated Databases

No curated data.