We have a suspicion that you are an automated web bot software, not a real user. To keep our site fast for other users, we have slowed down this page. The slowdown will gradually disappear. If you think this is a mistake, please contact us at genome-www@soe.ucsc.edu. Also note that all data for hgGeneGraph can be obtained through our public MySQL server and all our software source code is available and can be installed locally onto your own computer. If you are unsure how to use these resources, do not hesitate to contact us.
UCSC Genome Browser Gene Interaction Graph
Gene interactions and pathways from curated databases and text-mining
Proc Natl Acad Sci U S A 2011, PMID: 21903926

Nontelomeric splice variant of telomere repeat-binding factor 2 maintains neuronal traits by sequestering repressor element 1-silencing transcription factor.

Zhang, Peisu; Casaday-Potts, Rebecca; Precht, Patricia; Jiang, Haiyang; Liu, Yie; Pazin, Michael J; Mattson, Mark P

Telomere repeat-binding factor 2 (TRF2) is critical for telomere integrity in dividing stem and somatic cells, but its role in postmitotic neurons is unknown. Apart from protecting telomeres, nuclear TRF2 interacts with the master neuronal gene-silencer repressor element 1-silencing transcription factor (REST), and disruption of this interaction induces neuronal differentiation. Here we report a developmental switch from the expression of TRF2 in proliferating neural progenitor cells to expression of a unique short nontelomeric isoform of TRF2 (TRF2-S) as neurons establish a fully differentiated state. Unlike nuclear TRF2, which enhances REST-mediated gene repression, TRF2-S is located in the cytoplasm where it sequesters REST, thereby maintaining the expression of neuronal genes, including those encoding glutamate receptors, cell adhesion, and neurofilament proteins. In neurons, TRF2-S-mediated antagonism of REST nuclear activity is greatly attenuated by either overexpression of TRF2 or administration of the excitatory amino acid kainic acid. Overexpression of TRF2-S rescues kainic acid-induced REST nuclear accumulation and its gene-silencing effects. Thus, TRF2-S acts as part of a unique developmentally regulated molecular switch that plays critical roles in the maintenance and plasticity of neurons.

Document information provided by NCBI PubMed

Text Mining Data

neuronal differentiation → TRF2: " Apart from protecting telomeres, nuclear TRF2 interacts with the master neuronal gene-silencer repressor element 1-silencing transcription factor ( REST ), and disruption of this interaction induces neuronal differentiation "

Manually curated Databases

No curated data.