We have a suspicion that you are an automated web bot software, not a real user. To keep our site fast for other users, we have slowed down this page. The slowdown will gradually disappear. If you think this is a mistake, please contact us at genome-www@soe.ucsc.edu. Also note that all data for hgGeneGraph can be obtained through our public MySQL server and all our software source code is available and can be installed locally onto your own computer. If you are unsure how to use these resources, do not hesitate to contact us.
UCSC Genome Browser Gene Interaction Graph
Gene interactions and pathways from curated databases and text-mining
Biochemistry 2001, PMID: 11371203

Oligomeric interactions between phospholamban molecules regulate Ca-ATPase activity in functionally reconstituted membranes.

Yao, Q; Chen, L T; Li, J; Brungardt, K; Squier, T C; Bigelow, D J

Phospholamban (PLB) is a major target of the beta-adrenergic cascade in the heart, and functions as an endogenous inhibitor of Ca-ATPase transport activity. To identify whether oligomeric interactions between PLB molecules are involved in regulating Ca-ATPase transport activity, we have investigated functional interactions between PLB and the Ca-ATPase in proteoliposomes of purified PLB functionally co-reconstituted with the SERCA2a isoform of the Ca-ATPase isolated from cardiac sarcoplasmic reticulum (SR). The calcium sensitivity of this reconstituted preparation and functional stimulation by cAMP-dependent protein kinase (PKA) are virtually identical to those of the Ca-ATPase in cardiac SR microsomes, ensuring the functional relevance of this reconstituted preparation. Interactions between PLB molecules were measured following covalent modification of the single lysine (i.e., Lys(3)) in PLB isolated from cardiac SR membranes with fluorescein isothiocyanate (FITC) prior to co-reconstitution with the Ca-ATPase. FITC modification of PLB does not interfere with the ability of PLB to inhibit the Ca-ATPase, since FITC-PLB co-reconstituted with the Ca-ATPase exhibits a similar calcium dependence of Ca-ATPase activation to that observed in native SR membranes. Thus, the functional arrangement of PLB with the Ca-ATPase is not modified by FITC modification. Using changes in the anisotropy of FITC-PLB resulting from fluorescence resonance energy transfer (FRET) between proximal PLB molecules to measure the average size and spatial arrangement of FITC chromophores, we find that PLB self-associates to form oligomers whose spatial arrangement with respect to one another is in agreement with earlier suggestions that PLB exists predominantly as a homopentamer. The inability of PKA to activate PLB following covalent modification with FITC permits functional interactions between PLB molecules associated with the Ca-ATPase activation to be identified. A second-order loss of Ca-ATPase activation by PKA is observed as a function of the fractional contribution of FITC-PLB, indicating that PKA-dependent activation of two PLB molecules within a quaternary complex containing the Ca-ATPase is necessary for activation of the Ca-ATPase. We suggest that the requirement for activation of two PLB molecules by PKA represents a physiological mechanism to ensure that activation of the Ca-ATPase following beta-adrenergic stimulation in the heart only occurs above a threshold level of PKA activation.

Document information provided by NCBI PubMed

Text Mining Data

Ca-ATPase ⊣ PLB: " FITC modification of PLB does not interfere with the ability of PLB to inhibit the Ca-ATPase , since FITC-PLB co-reconstituted with the Ca-ATPase exhibits a similar calcium dependence of Ca-ATPase activation to that observed in native SR membranes "

PLB → PKA: " A second-order loss of Ca-ATPase activation by PKA is observed as a function of the fractional contribution of FITC-PLB, indicating that PKA dependent activation of two PLB molecules within a quaternary complex containing the Ca-ATPase is necessary for activation of the Ca-ATPase "

PLB → PKA: " We suggest that the requirement for activation of two PLB molecules by PKA represents a physiological mechanism to ensure that activation of the Ca-ATPase following beta-adrenergic stimulation in the heart only occurs above a threshold level of PKA activation "

Manually curated Databases

No curated data.