J Appl Physiol 1999,
PMID: 10484568
Gao, Y; Dhanakoti, S; Tolsa, J F; Raj, J U
In a variety of systemic blood vessels, protein kinase G (PKG) plays a critical role in mediating relaxation induced by agents that elevate cGMP, such as nitric oxide. The role of PKG in nitric oxide- and cGMP-induced relaxation is less certain in the pulmonary circulation. In the present study, we examined the effects of inhibitors of PKG on the responses of isolated fourth-generation pulmonary veins of newborn lambs (10 +/- 1 days of age) to nitric oxide and cGMP. In vessels preconstricted with endothelin-1, nitric oxide and 8-bromo-cGMP (a cell-membrane-permeable cGMP analog) induced concentration-dependent relaxation. The relaxation was significantly attenuated by beta-phenyl-1, N(2)-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothionate (Rp-8-Br-PET-cGMPS; a PKG inhibitor) and N-[2-(methylamino)ethyl]5-isoquinolinesulfonamide [H-8; an inhibitor of PKG and protein kinase A (PKA)] but was not affected by KT-5720 (a PKA inhibitor). Biochemical study showed that PKG activity in newborn ovine pulmonary veins was inhibited by 8-Br-PET-cGMPS and H-8 but not by KT-5720. PKA activity was not affected by 8-Br-PET-cGMPS but was inhibited by H-8 and KT-5720. These results suggest that PKG is involved in relaxation of pulmonary veins of newborn lambs induced by nitric oxide and cGMP.
Document information provided by NCBI PubMed
Text Mining Data
PKA — 8-Br-PET-cGMPS: "
PKA activity was not
affected by
8-Br-PET-cGMPS but was inhibited by H-8 and KT-5720
"
Manually curated Databases
No curated data.